文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的磁性纳米材料的燃烧合成

Combustion Synthesis of Magnetic Nanomaterials for Biomedical Applications.

作者信息

Gyulasaryan Harutyun, Kuzanyan Astghik, Manukyan Aram, Mukasyan Alexander S

机构信息

Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia.

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Nanomaterials (Basel). 2023 Jun 21;13(13):1902. doi: 10.3390/nano13131902.


DOI:10.3390/nano13131902
PMID:37446418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10343784/
Abstract

Combustion synthesis is a green, energy-saving approach that permits an easy scale-up and continuous technologies. This process allows for synthesizing various nanoscale materials, including oxides, nitrides, sulfides, metals, and alloys. In this work, we critically review the reported results on the combustion synthesis of magnetic nanoparticles, focusing on their properties related to different bio-applications. We also analyze challenges and suggest specific directions of research, which lead to the improvement of the properties and stability of fabricated materials.

摘要

燃烧合成是一种绿色、节能的方法,它允许轻松扩大规模并采用连续技术。该过程能够合成各种纳米级材料,包括氧化物、氮化物、硫化物、金属和合金。在这项工作中,我们批判性地回顾了有关磁性纳米粒子燃烧合成的已报道结果,重点关注其与不同生物应用相关的特性。我们还分析了面临的挑战并提出了具体的研究方向,这些方向将有助于改善所制备材料的性能和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/d2bbb7cc6fdb/nanomaterials-13-01902-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/da090b480dfc/nanomaterials-13-01902-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/3695b547808b/nanomaterials-13-01902-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/995125c59072/nanomaterials-13-01902-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/b377a1e60bc1/nanomaterials-13-01902-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/950fe42f996e/nanomaterials-13-01902-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/d26915bbef1d/nanomaterials-13-01902-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/efb3b743aa1e/nanomaterials-13-01902-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/fd711c2eec4d/nanomaterials-13-01902-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/887454d8113e/nanomaterials-13-01902-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/94c42c0b8fd6/nanomaterials-13-01902-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/b538dc921b12/nanomaterials-13-01902-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/37f6de6b922c/nanomaterials-13-01902-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/582dda031343/nanomaterials-13-01902-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/dec053dd76bc/nanomaterials-13-01902-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/8c4d357c53f8/nanomaterials-13-01902-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/9844e0e8d525/nanomaterials-13-01902-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/d2bbb7cc6fdb/nanomaterials-13-01902-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/da090b480dfc/nanomaterials-13-01902-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/3695b547808b/nanomaterials-13-01902-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/995125c59072/nanomaterials-13-01902-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/b377a1e60bc1/nanomaterials-13-01902-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/950fe42f996e/nanomaterials-13-01902-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/d26915bbef1d/nanomaterials-13-01902-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/efb3b743aa1e/nanomaterials-13-01902-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/fd711c2eec4d/nanomaterials-13-01902-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/887454d8113e/nanomaterials-13-01902-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/94c42c0b8fd6/nanomaterials-13-01902-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/b538dc921b12/nanomaterials-13-01902-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/37f6de6b922c/nanomaterials-13-01902-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/582dda031343/nanomaterials-13-01902-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/dec053dd76bc/nanomaterials-13-01902-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/8c4d357c53f8/nanomaterials-13-01902-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/9844e0e8d525/nanomaterials-13-01902-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b8/10343784/d2bbb7cc6fdb/nanomaterials-13-01902-g017.jpg

相似文献

[1]
Combustion Synthesis of Magnetic Nanomaterials for Biomedical Applications.

Nanomaterials (Basel). 2023-6-21

[2]
Solution Combustion Synthesis of Nanoscale Materials.

Chem Rev. 2016-9-9

[3]
Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts.

Nanoscale. 2022-8-25

[4]
Combustion Synthesis of Materials for Application in Supercapacitors: A Review.

Nanomaterials (Basel). 2023-11-27

[5]
Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

Nanoscale. 2015-11-14

[6]
Optimistic and possible contribution of nanomaterial on biomedical applications: A review.

Environ Res. 2023-2-1

[7]
Pharmaceutical and Biomedical Applications of Green Synthesized Metal and Metal Oxide Nanoparticles.

Curr Pharm Des. 2020

[8]
Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications.

Nanoscale Res Lett. 2021-11-27

[9]
Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites.

Colloids Surf B Biointerfaces. 2023-7

[10]
Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.

Environ Res. 2023-8-15

引用本文的文献

[1]
A Comprehensive Overview of CoO Nanoparticles: Solution Combustion Synthesis and Potential Applications.

Nanomaterials (Basel). 2025-6-16

[2]
Combustion Synthesis of Materials for Application in Supercapacitors: A Review.

Nanomaterials (Basel). 2023-11-27

本文引用的文献

[1]
Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects.

Nanomaterials (Basel). 2022-10-12

[2]
Iron oxide nanoparticles as multimodal imaging tools.

RSC Adv. 2019-12-6

[3]
Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives.

Pharmaceutics. 2022-1-16

[4]
Recent development for biomedical applications of magnetic nanoparticles.

Inorg Chem Commun. 2021-12

[5]
Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles.

Polymers (Basel). 2021-9-3

[6]
Biogenic Synthesis of NiO Nanoparticles Using Leaf Extract and Their Antidiabetic and Cytotoxic Effects.

Molecules. 2021-4-22

[7]
A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats.

J Nanobiotechnology. 2021-3-22

[8]
Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications.

Int J Mol Sci. 2021-1-4

[9]
Solution combustion synthesis (SCS) of theranostic ions doped biphasic calcium phosphates; kinetic of ions release in simulated body fluid (SBF) and reactive oxygen species (ROS) generation.

Mater Sci Eng C Mater Biol Appl. 2021-1

[10]
Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFeO and CoMFeO (M = Mn, Ni, and Zn).

Phys Chem Chem Phys. 2020-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索