Mashan Togzhan T, Hashami Muhammad, Bergeneva Nurgul S, Nurmukhanbetova Nurgul N, Beisebayeva Aigul S, Nazhipkyzy Meruyert, Mamatova Gulnar U, Zhaxybayeva Aigerim G
Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
Department of Chemical Physics and Material Science, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan.
Nanomaterials (Basel). 2025 Jun 16;15(12):932. doi: 10.3390/nano15120932.
CoO nanoparticles synthesized by solution combustion synthesis present a versatile platform for the development of porous nanostructures with tunable morphology and physicochemical properties. Synthesis conditions and parameters such as fuel type; fuel-to-oxidizer ratio and temperature control lead yielding; and CoO NPs with fine particle size, surface area, and porosity result in enhancing their electrochemical and catalytic capabilities. This review evaluates present studies about SCS CoO NPs to study how synthesis parameter modifications affect both surface morphology and material structure characteristics including porosity features, which make their improved performance ideal for lithium-ion batteries and supercapacitors. Moreover, the integration of dopants with carbon-based hybrid composites enhances material conductivity and stability by addressing both capacity fading and low electronic conductivity concerns. This review mainly aims to explore the significant relation between fundamental material design principles together with practical uses and provides predictions about future research advancements that aim to enhance the performance of CoO NPs in next-generation energy and environmental technology applications.
通过溶液燃烧合成法制备的CoO纳米颗粒为开发具有可调形态和物理化学性质的多孔纳米结构提供了一个多功能平台。合成条件和参数,如燃料类型、燃料与氧化剂的比例以及温度控制,会影响产物的产率;而具有细粒度、表面积和孔隙率的CoO纳米颗粒会增强其电化学和催化能力。本综述评估了目前关于溶液燃烧合成CoO纳米颗粒的研究,以探讨合成参数的改变如何影响表面形态和材料结构特征,包括孔隙率特征,这些特征使其在锂离子电池和超级电容器方面的性能提升成为理想选择。此外,将掺杂剂与碳基混合复合材料相结合,通过解决容量衰减和低电子电导率问题,提高了材料的导电性和稳定性。本综述主要旨在探索基本材料设计原则与实际应用之间的重要关系,并对未来的研究进展进行预测,这些进展旨在提高CoO纳米颗粒在下一代能源和环境技术应用中的性能。