文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

变种Roth.、L.和L.的选定提取物的植物化学筛选及抗氧化潜力

Phytochemical Screening and Antioxidant Potential of Selected Extracts from var. Roth., L., and L.

作者信息

Ghica Adelina, Drumea Veronica, Moroșan Alina, Mihaiescu Dan Eduard, Costea Liliana, Luță Emanuela Alice, Mihai Dragos Paul, Balaci Dalila Teodora, Fița Ancuța Cătălina, Olaru Octavian Tudorel, Boscencu Rica, Gîrd Cerasela Elena

机构信息

Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.

Biotehnos SA, Gorunului Street No. 3-5, 075100 Otopeni, Romania.

出版信息

Plants (Basel). 2023 Jun 30;12(13):2510. doi: 10.3390/plants12132510.


DOI:10.3390/plants12132510
PMID:37447070
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10346185/
Abstract

The aim of the present study was to obtain, characterize, and evaluate the antioxidant potential of some extracts obtained from the bark of var. Roth., the root of L., and the green herb of the . The results revealed that the lowest IC50 value, determined by all three methods, was obtained for (BE) (73.6 µg/mL-DPPH method, 11.2 µg/mL-ABTS method, and 58.7 µg/mL-FRAP method), followed by (LE) (805.6 µg/mL, 92.1 µg/mL, and 722 µg/mL) and (1.13 mg/mL-DPPH method, 99.7 µg/mL-ABTS method, and 135.1 µg/mL-FRAP method). These results correlate with total polyphenols content (expressed in g tannic acid/100 g dry extract), with BE having more polyphenols than LE and AE (47.96 ± 9.7083 for BE, compared with 9.31 ± 0.9913 for LE and 40.55 ± 6.3715 for AE). The total flavonoid content (expressed as g rutoside/100 g dry extract) is similar for BE and LE (3.75 ± 0.3140 and 3.44 ± 0.3037) and smaller for AE (1.95 ± 0.0526). Therefore, has the strongest antioxidant action, with an IC50 value very close to the standard used as a reference (ascorbic acid-16.5 μg/mL solution). The FT-ICR-MS analysis confirmed the presence of the major compounds in all three extracts. The antioxidant properties of the studied extracts were further supported by molecular docking experiments that revealed the potential of the analyzed phytochemicals to act as both noncovalent and covalent activators of the Nrf2 signaling pathway, with promising benefits in treating various skin disorders.

摘要

本研究的目的是获取、表征和评估从 Roth. 变种的树皮、L. 的根以及 [此处原文缺失植物名称] 的绿色草本植物中提取的某些提取物的抗氧化潜力。结果显示,通过所有三种方法测定,[此处原文缺失植物名称](BE)的半数抑制浓度(IC50)值最低(二苯基苦味酰基自由基(DPPH)法为73.6微克/毫升、2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)法为11.2微克/毫升、铁离子还原抗氧化能力(FRAP)法为58.7微克/毫升),其次是 [此处原文缺失植物名称](LE)(分别为805.6微克/毫升、92.1微克/毫升和722微克/毫升)以及 [此处原文缺失植物名称](DPPH法为1.13毫克/毫升、ABTS法为99.7微克/毫升、FRAP法为135.1微克/毫升)。这些结果与总多酚含量相关(以每100克干提取物中没食子酸的克数表示),BE的多酚含量高于LE和 [此处原文缺失植物名称](AE)(BE为47.96 ± 9.7083,而LE为9.31 ± 0.9913,AE为40.55 ± 6.3715)。总黄酮含量(以每100克干提取物中芦丁的克数表示)在BE和LE中相似(分别为3.75 ± 0.3140和3.44 ± 0.3037),在AE中较低(1.95 ± 0.0526)。因此,[此处原文缺失植物名称] 具有最强的抗氧化作用,其IC50值非常接近用作参考的标准物质(抗坏血酸 - 16.5微克/毫升溶液)。傅里叶变换离子回旋共振质谱(FT - ICR - MS)分析证实了所有三种提取物中主要化合物的存在。分子对接实验进一步支持了所研究提取物的抗氧化特性,该实验揭示了所分析的植物化学物质作为核因子E2相关因子2(Nrf2)信号通路的非共价和共价激活剂的潜力,在治疗各种皮肤疾病方面具有潜在益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/70add4a3aba4/plants-12-02510-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/ee8946af31af/plants-12-02510-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/84721845eb3f/plants-12-02510-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/60c6cf06d88a/plants-12-02510-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/1eb802ea6317/plants-12-02510-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/61310c0c9d3d/plants-12-02510-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/c806f7fb5dd5/plants-12-02510-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/8fa6f78d0533/plants-12-02510-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/7b17b1463569/plants-12-02510-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/9cfd99ce2c57/plants-12-02510-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/f1e8a996073e/plants-12-02510-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/3b3c3450d3b7/plants-12-02510-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/ff2e7c7a4cb0/plants-12-02510-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/f01c8e7705d2/plants-12-02510-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/70add4a3aba4/plants-12-02510-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/ee8946af31af/plants-12-02510-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/84721845eb3f/plants-12-02510-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/60c6cf06d88a/plants-12-02510-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/1eb802ea6317/plants-12-02510-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/61310c0c9d3d/plants-12-02510-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/c806f7fb5dd5/plants-12-02510-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/8fa6f78d0533/plants-12-02510-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/7b17b1463569/plants-12-02510-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/9cfd99ce2c57/plants-12-02510-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/f1e8a996073e/plants-12-02510-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/3b3c3450d3b7/plants-12-02510-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/ff2e7c7a4cb0/plants-12-02510-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/f01c8e7705d2/plants-12-02510-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e73/10346185/70add4a3aba4/plants-12-02510-g014.jpg

相似文献

[1]
Phytochemical Screening and Antioxidant Potential of Selected Extracts from var. Roth., L., and L.

Plants (Basel). 2023-6-30

[2]
The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential.

Plants (Basel). 2022-6-24

[3]
Antioxidant Activity of Dry Birch (Betula Pendula) Leaves Extract.

Folia Med (Plovdiv). 2018-12-1

[4]
Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity.

Biomedicines. 2024-6-27

[5]
Phytochemicals, Antioxidant and Antimicrobial Potentials and LC-MS Analysis of Desf. Extracts.

Molecules. 2023-2-28

[6]
Antioxidant, Cytotoxic, and Antimicrobial Activities of L., Pall., and (Thunb.) Lindl. Extracts.

Medicines (Basel). 2019-3-30

[7]
Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: and .

Molecules. 2021-7-1

[8]
An Indicating Role of Antioxidant System Enzymes at the Stage of Active Structural Anomalies Formation in Karelian Birch ( Roth var. (Mercl.) Hämet-Ahti).

Protein Pept Lett. 2023

[9]
Chemical composition and antioxidant, cytotoxic, and insecticidal potential of Valeriana alliariifolia in Turkey.

Arh Hig Rada Toksikol. 2019-9-1

[10]
Therapeutic propensities, phytochemical composition, and toxicological evaluation of Anagallis arvensis (L.): A wild edible medicinal food plant.

Food Res Int. 2020-11

引用本文的文献

[1]
Phytochemical, Antioxidant, Antimicrobial and Safety Profile of L. Extract Obtained from Romania.

Plants (Basel). 2024-11-21

[2]
Insulin-Mimetic Activity of Herbal Extracts Identified with Large-Scale Total Internal Reflection Fluorescence Microscopy.

Nutrients. 2024-7-9

[3]
Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity.

Biomedicines. 2024-6-27

[4]
Implications of the Cultivation of Rosemary and Thyme () in Plant Communities for the Development of Antioxidant Therapies.

Int J Mol Sci. 2023-7-19

本文引用的文献

[1]
Regulation of Gene Expression through Food-Curcumin as a Sirtuin Activity Modulator.

Plants (Basel). 2022-6-30

[2]
Effect of Licorice () Extract as an Immunostimulant on Serum and Skin Mucus Immune Parameters, Transcriptomic Responses of Immune-Related Gene, and Disease Resistance Against in Rainbow Trout ().

Front Vet Sci. 2022-2-23

[3]
AHR and NRF2 in Skin Homeostasis and Atopic Dermatitis.

Antioxidants (Basel). 2022-1-25

[4]
Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors.

Pharmaceutics. 2021-12-28

[5]
Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing.

Pharmaceuticals (Basel). 2021-12-28

[6]
Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice.

Int Immunopharmacol. 2021-12

[7]
Multiple Antioxidative and Bioactive Molecules of Oats ( L.) in Human Health.

Antioxidants (Basel). 2021-9-13

[8]
A practical guide to large-scale docking.

Nat Protoc. 2021-10

[9]
Anti-inflammatory and Pro-apoptotic Effects of 18beta-Glycyrrhetinic Acid and Models of Rheumatoid Arthritis.

Front Pharmacol. 2021-7-26

[10]
Network Pharmacology-Based Strategy for Elucidating the Molecular Basis Forthe Pharmacologic Effects of Licorice ( spp.).

Front Pharmacol. 2021-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索