Richely Emmanuelle, Beaugrand Johnny, Coret Michel, Binetruy Christophe, Ouagne Pierre, Bourmaud Alain, Guessasma Sofiane
INRAE, Research Unit BIA UR1268, 3, Impasse Yvette Cauchois, 44316 Nantes, France.
Lab Therm & Energie Nantes, LTeN, École Centrale de Nantes, Nantes Université, CNRS, GeM, UMR 6183, 44321 Nantes, France.
Polymers (Basel). 2023 Jun 23;15(13):2794. doi: 10.3390/polym15132794.
This study aims at better understanding the damage and fracture kinetics in flax fibre elements at both the unitary and bundle scales, using an experimental setup allowing optical observation at high recording rate in the course of tensile loading. Defects and issues from flax unitary fibre extraction are quantitated using polarized light microscopy. Tensile loading is conducted according to a particular setup, adapted to fibres of 10 to 20 µm in diameter and 10 mm in length. Optical recording using a high-speed camera is performed during loading up to the failure at acquisition, with speed ranging from 108,000 to 270,000 frames per second. Crack initiation in polymer layers of fibre elements, propagation as well as damage mechanisms are captured. The results show different failure scenarios depending on the fibre element's nature. In particular, fractured fibres underline either a fully transverse failure propagation or a combination of transverse and longitudinal cracking with different balances. Image recordings with high time resolution of down to 3.7 μs suggest an unstable system and transverse crack speed higher than 4 m/s and a slower propagation for longitudinal crack deviation. Failure propagation monitoring and fracture mechanism studies in individual natural fibre or bundles, using tensile load with optical observation, showed contrasted behaviour and the importance of the structural scale exanimated. This study can help in tailoring the eco-design of flax-based composites, in terms of toughness and mechanical performances, for both replacement of synthetic fibre materials and innovative composites with advanced properties.
本研究旨在更好地理解亚麻纤维单元在单一尺度和束状尺度下的损伤和断裂动力学,采用一种实验装置,该装置能够在拉伸加载过程中以高记录速率进行光学观察。使用偏光显微镜对亚麻单纤维提取过程中的缺陷和问题进行定量分析。拉伸加载根据特定装置进行,该装置适用于直径为10至20微米、长度为10毫米的纤维。在加载直至破坏的过程中,使用高速相机进行光学记录,采集速度范围为每秒108,000至270,000帧。捕捉纤维单元聚合物层中的裂纹萌生、扩展以及损伤机制。结果表明,根据纤维单元的性质,存在不同的破坏模式。特别是,断裂的纤维要么呈现完全横向的破坏扩展,要么呈现横向和纵向开裂的组合,且比例不同。时间分辨率低至3.7微秒的图像记录表明系统不稳定,横向裂纹速度高于4米/秒,纵向裂纹扩展速度较慢。使用拉伸载荷并结合光学观察对单个天然纤维或纤维束进行破坏扩展监测和断裂机制研究,结果显示出不同的行为,以及所研究结构尺度的重要性。这项研究有助于在韧性和机械性能方面定制基于亚麻的复合材料的生态设计,以替代合成纤维材料并开发具有先进性能的创新复合材料。