Suppr超能文献

基于底物特异性内切葡聚糖酶诱导的生物力学变化的初生细胞壁的修订结构。

A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

机构信息

Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Plant Physiol. 2012 Apr;158(4):1933-43. doi: 10.1104/pp.111.192880. Epub 2012 Feb 23.

Abstract

Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this "tethered network" model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.

摘要

木葡聚糖被广泛认为在初生细胞壁中作为纤维素微纤丝之间的连接物,通过限制微纤丝的侧向分离来限制细胞的增大。为了检验这个“束缚网络”模型的生物力学预测,我们评估了黄瓜(Cucumis sativus)下胚轴细胞壁在三种能够特异性水解木葡聚糖、纤维素或两者的家族 12 内切-β-1,4-葡聚糖酶作用下发生蠕变(长期、不可逆伸展)的能力。木葡聚糖特异性内切葡聚糖酶(来自 Aspergillus aculeatus 的 XEG)未能诱导细胞壁蠕变,而能够水解木葡聚糖和纤维素的内切葡聚糖酶(来自 Hypocrea jecorina 的 Cel12A)则诱导了较高的蠕变率。纤维素特异性内切葡聚糖酶(来自 Aspergillus niger 的 CEG)本身或与 XEG 联合使用均不会引起细胞壁蠕变。用包括家族 5 内切葡聚糖酶在内的其他酶进行的测试证实了这样的结论,即要引起蠕变,内切葡聚糖酶必须同时切割木葡聚糖和纤维素。弹性和塑性顺应性的测量结果也得出了类似的结论。XEG 和 Cel12A 都能在完整的细胞壁中水解木葡聚糖,但 Cel12A 可以水解 XEG 消化作用下具有抗性的较小木葡聚糖区室。在拟南芥(Arabidopsis thaliana)下胚轴的实验中,通过 Cel12A 诱导野生型而非木葡聚糖缺陷型(xxt1/xxt2)细胞壁蠕变的实验,证实了木葡聚糖在这些酶反应中的参与。我们的结果与木葡聚糖作为横跨纤维素微纤丝 20-40nm 间距的承载系绳的常见描述不兼容,但它们确实暗示了细胞壁力学中的一个较小的木葡聚糖成分。结构上重要的木葡聚糖可能位于微纤丝之间紧密接触的有限区域。

相似文献

引用本文的文献

本文引用的文献

4
Biomechanics of plant growth.植物生长的生物力学
Am J Bot. 2006 Oct;93(10):1415-25. doi: 10.3732/ajb.93.10.1415.
9
Hemicelluloses.半纤维素。
Annu Rev Plant Biol. 2010;61:263-89. doi: 10.1146/annurev-arplant-042809-112315.
10
The mechanics behind plant development.植物发育的机理。
New Phytol. 2010 Jan;185(2):369-85. doi: 10.1111/j.1469-8137.2009.03100.x. Epub 2009 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验