Bagemihl Isabell, Cammann Lucas, Pérez-Fortes Mar, van Steijn Volkert, van Ommen J Ruud
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Department of Engineering Systems and Services, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands.
ACS Sustain Chem Eng. 2023 Jun 28;11(27):10130-10141. doi: 10.1021/acssuschemeng.3c02226. eCollection 2023 Jul 10.
The production of base chemicals by electrochemical conversion of captured CO has the potential to close the carbon cycle, thereby contributing to a future energy transition. With the feasibility of low-temperature electrochemical CO conversion demonstrated at lab scale, research is shifting toward optimizing electrolyser design and operation for industrial applications, with target values based on techno-economic analysis. However, current techno-economic analyses often neglect experimentally reported interdependencies of key performance variables such as the current density, the faradaic efficiency, and the conversion. Aiming to understand the impact of these interdependencies on the economic outlook, we develop a model capturing mass transfer effects over the channel length for an alkaline, membrane electrolyser. Coupling the channel scale with the higher level process scale and embedding this multiscale model in an economic framework allows us to analyze the economic trade-off between the performance variables. Our analysis shows that the derived target values for the performance variables strongly depend on the interdependencies described in the channel scale model. Our analysis also suggests that economically optimal current densities can be as low as half of the previously reported benchmarks. More generally, our work highlights the need to move toward multiscale models, especially in the field of CO electrolysis, to effectively elucidate current bottlenecks in the quest toward economically compelling system designs.
通过捕获的二氧化碳的电化学转化来生产基础化学品,有可能闭合碳循环,从而推动未来的能源转型。随着实验室规模低温电化学二氧化碳转化的可行性得到证明,研究正朝着为工业应用优化电解槽设计和运行方向发展,目标值基于技术经济分析。然而,当前的技术经济分析往往忽略了实验报告的关键性能变量之间的相互依存关系,如电流密度、法拉第效率和转化率。为了理解这些相互依存关系对经济前景的影响,我们开发了一个模型,用于捕捉碱性膜电解槽通道长度上的传质效应。将通道尺度与更高层次的过程尺度相结合,并将这个多尺度模型嵌入经济框架,使我们能够分析性能变量之间的经济权衡。我们的分析表明,性能变量的推导目标值强烈依赖于通道尺度模型中描述的相互依存关系。我们的分析还表明,经济上最优的电流密度可能低至先前报告基准的一半。更普遍地说,我们的工作强调了转向多尺度模型的必要性,特别是在二氧化碳电解领域,以有效阐明在寻求经济上有吸引力的系统设计过程中的当前瓶颈。