Suppr超能文献

弥合多样性差距:提高跨种族遗传预测准确性的分析和研究设计考虑因素。

Bridging the diversity gap: Analytical and study design considerations for improving the accuracy of trans-ancestry genetic prediction.

机构信息

ITG, Helmholtz Zentrum München, Munich, Germany.

Technical University of Munich, Munich, Germany.

出版信息

HGG Adv. 2023 Jun 15;4(3):100214. doi: 10.1016/j.xhgg.2023.100214. eCollection 2023 Jul 13.

Abstract

Genetic prediction of common complex disease risk is an essential component of precision medicine. Currently, genome-wide association studies (GWASs) are mostly composed of European-ancestry samples and resulting polygenic scores (PGSs) have been shown to poorly transfer to other ancestries partly due to heterogeneity of allelic effects between populations. Fixed-effects (FETA) and random-effects (RETA) trans-ancestry meta-analyses do not model such ancestry-related heterogeneity, while ancestry-specific (AS) scores may suffer from low power due to low sample sizes. In contrast, trans-ancestry meta-regression (TAMR) builds ancestry-aware PGS that account for more complex trans-ancestry architectures. Here, we examine the predictive performance of these four PGSs under multiple genetic architectures and ancestry configurations. We show that the predictive performance of FETA and RETA is strongly affected by cross-ancestry genetic heterogeneity, while AS PGS performance decreases in under-represented target populations. TAMR PGS is also impacted by heterogeneity but maintains good prediction performance in most situations, especially in ancestry-diverse scenarios. In simulations of human complex traits, TAMR scores currently explain 25% more phenotypic variance than AS in triglyceride levels and 33% more phenotypic variance than FETA in type 2 diabetes in most non-European populations. Importantly, a high proportion of non-European-ancestry individuals is needed to reach prediction levels that are comparable in those populations to the one observed in European-ancestry studies. Our results highlight the need to rebalance the ancestral composition of GWAS to enable accurate prediction in non-European-ancestry groups, and demonstrate the relevance of meta-regression approaches for compensating some of the current population biases in GWAS.

摘要

遗传预测常见复杂疾病风险是精准医学的重要组成部分。目前,全基因组关联研究(GWAS)大多由欧洲血统样本组成,由于人群之间等位效应的异质性,由此产生的多基因评分(PGS)在很大程度上不能转移到其他血统。固定效应(FETA)和随机效应(RETA)跨血统荟萃分析没有对这种与血统相关的异质性进行建模,而血统特异性(AS)评分由于样本量低可能会因效力低而受到影响。相比之下,跨血统荟萃回归(TAMR)构建了能够解释更复杂的跨血统结构的血统感知 PGS。在这里,我们在多种遗传结构和血统配置下检查了这四种 PGS 的预测性能。我们表明,FETA 和 RETA 的预测性能受到跨血统遗传异质性的强烈影响,而 AS PGS 性能在代表性不足的目标人群中下降。TAMR PGS 也受到异质性的影响,但在大多数情况下仍保持良好的预测性能,尤其是在血统多样化的情况下。在人类复杂特征的模拟中,在大多数非欧洲人群中,TAMR 评分目前在甘油三酯水平上比 AS 多解释 25%的表型方差,在 2 型糖尿病中比 FETA 多解释 33%的表型方差。重要的是,需要有很大比例的非欧洲血统个体才能达到在这些人群中与在欧洲血统研究中观察到的可比的预测水平。我们的研究结果强调需要重新平衡 GWAS 的祖先组成,以实现非欧洲血统群体的准确预测,并证明荟萃回归方法对于补偿 GWAS 中当前一些人群偏差的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb2a/10336686/639b4c2cfda6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验