Suppr超能文献

利用深度学习、虚拟筛选和分子动力学模拟从头生成用于治疗 SARS-CoV-2 的双靶标配体。

De novo generation of dual-target ligands for the treatment of SARS-CoV-2 using deep learning, virtual screening, and molecular dynamic simulations.

机构信息

Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.

State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.

出版信息

J Biomol Struct Dyn. 2024 Apr;42(6):3019-3029. doi: 10.1080/07391102.2023.2234481. Epub 2023 Jul 14.

Abstract

De novo generation of molecules with the necessary features offers a promising opportunity for artificial intelligence, such as deep generative approaches. However, creating novel compounds having biological activities toward two distinct targets continues to be a very challenging task. In this study, we develop a unique computational framework for the de novo synthesis of bioactive compounds directed at two predetermined therapeutic targets. This framework is referred to as the dual-target ligand generative network. Our approach uses a stochastic policy to explore chemical spaces called a sequence-based simple molecular input line entry system (SMILES) generator. The steps in the high-level workflow would be to gather and prepare the training data for both targets' molecules, build a neural network model and train it to make molecules, create new molecules using generative AI, and then virtually screen the newly validated molecules against the SARS-CoV-2 PLpro and 3CLpro drug targets. Results shows that novel molecules generated have higher binding affinity with both targets than the conventional drug i.e. Remdesivir being used for the treatment of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

摘要

从头生成具有必要特征的分子为人工智能提供了一个有前景的机会,例如深度生成方法。然而,创造具有针对两个不同靶点的生物活性的新型化合物仍然是一项极具挑战性的任务。在这项研究中,我们开发了一个独特的计算框架,用于针对两个预定治疗靶点的生物活性化合物的从头合成。该框架被称为双靶标配体生成网络。我们的方法使用随机策略来探索称为基于序列的简单分子输入行输入系统 (SMILES) 的化学空间生成器。高级工作流程的步骤将是收集和准备两个靶标分子的训练数据,构建神经网络模型并对其进行训练以生成分子,使用生成式 AI 生成新分子,然后对新验证的分子进行虚拟筛选,以对抗 SARS-CoV-2 PLpro 和 3CLpro 药物靶标。结果表明,与传统药物瑞德西韦(用于治疗 SARS-CoV-2)相比,生成的新型分子与两个靶标具有更高的结合亲和力。由 Ramaswamy H. Sarma 传达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验