Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
Sci Adv. 2023 Jul 14;9(28):eadg6638. doi: 10.1126/sciadv.adg6638.
Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and -nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.
需要能够有效净化受损水源的膜技术来应对日益严重的水资源短缺问题。然而,最先进的工程膜受到普遍存在的有害权衡的限制,即具有高水透过率的膜缺乏选择性。目前的膜也很难去除低分子量中性溶质,并且容易受到水处理中使用的氧化剂的降解。我们报告了一种水淡化技术,该技术利用施加的压力通过带有被困空气层的膜驱动蒸汽传输。由于分离是由于气-液相变引起的,因此观察到包括氯化钠、硼、尿素和亚硝二甲胺在内的溶解溶质几乎完全被排斥。使用厚度小于 200nm 的空气层制造的膜具有超过商业膜的水透过率,而不会牺牲盐的截留率。我们还发现,空气截留膜能够耐受氯和臭氧氧化剂的暴露。这些结果增进了我们对蒸发行为的理解,并促进了高通量超高选择性分离。