Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005, Paris, France.
Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
Nat Commun. 2023 Jul 15;14(1):4229. doi: 10.1038/s41467-023-39948-7.
Structural defects control the kinetic, thermodynamic and mechanical properties of glasses. For instance, rare quantum tunneling two-level systems (TLS) govern the physics of glasses at very low temperature. Due to their extremely low density, it is very hard to directly identify them in computer simulations. We introduce a machine learning approach to efficiently explore the potential energy landscape of glass models and identify desired classes of defects. We focus in particular on TLS and we design an algorithm that is able to rapidly predict the quantum splitting between any two amorphous configurations produced by classical simulations. This in turn allows us to shift the computational effort towards the collection and identification of a larger number of TLS, rather than the useless characterization of non-tunneling defects which are much more abundant. Finally, we interpret our machine learning model to understand how TLS are identified and characterized, thus giving direct physical insight into their microscopic nature.
结构缺陷控制着玻璃的动力学、热力学和力学性能。例如,稀有量子隧穿双稳态系统(TLS)控制着极低温度下的玻璃物理。由于它们的密度极低,在计算机模拟中很难直接识别它们。我们引入了一种机器学习方法,以有效地探索玻璃模型的势能景观,并识别所需的缺陷类别。我们特别关注 TLS,并设计了一种算法,能够快速预测由经典模拟产生的任何两个非晶态构型之间的量子分裂。这反过来又使我们能够将计算工作集中在收集和识别更多的 TLS 上,而不是对大量更丰富的非隧穿缺陷进行无用的特征描述。最后,我们解释我们的机器学习模型,以了解如何识别和描述 TLS,从而直接深入了解它们的微观性质。