Suppr超能文献

通过机器学习发现眼镜缺陷。

Finding defects in glasses through machine learning.

机构信息

Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005, Paris, France.

Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.

出版信息

Nat Commun. 2023 Jul 15;14(1):4229. doi: 10.1038/s41467-023-39948-7.

Abstract

Structural defects control the kinetic, thermodynamic and mechanical properties of glasses. For instance, rare quantum tunneling two-level systems (TLS) govern the physics of glasses at very low temperature. Due to their extremely low density, it is very hard to directly identify them in computer simulations. We introduce a machine learning approach to efficiently explore the potential energy landscape of glass models and identify desired classes of defects. We focus in particular on TLS and we design an algorithm that is able to rapidly predict the quantum splitting between any two amorphous configurations produced by classical simulations. This in turn allows us to shift the computational effort towards the collection and identification of a larger number of TLS, rather than the useless characterization of non-tunneling defects which are much more abundant. Finally, we interpret our machine learning model to understand how TLS are identified and characterized, thus giving direct physical insight into their microscopic nature.

摘要

结构缺陷控制着玻璃的动力学、热力学和力学性能。例如,稀有量子隧穿双稳态系统(TLS)控制着极低温度下的玻璃物理。由于它们的密度极低,在计算机模拟中很难直接识别它们。我们引入了一种机器学习方法,以有效地探索玻璃模型的势能景观,并识别所需的缺陷类别。我们特别关注 TLS,并设计了一种算法,能够快速预测由经典模拟产生的任何两个非晶态构型之间的量子分裂。这反过来又使我们能够将计算工作集中在收集和识别更多的 TLS 上,而不是对大量更丰富的非隧穿缺陷进行无用的特征描述。最后,我们解释我们的机器学习模型,以了解如何识别和描述 TLS,从而直接深入了解它们的微观性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a57/10349890/0c76288cd9f2/41467_2023_39948_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验