Suppr超能文献

基于氘的时间分辨通量组学揭示了恶臭假单胞菌糖类加工的层级结构和动态变化。

Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida.

作者信息

Volke Daniel C, Gurdo Nicolas, Milanesi Riccardo, Nikel Pablo I

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

出版信息

Metab Eng. 2023 Sep;79:159-172. doi: 10.1016/j.ymben.2023.07.004. Epub 2023 Jul 16.

Abstract

Pseudomonas putida, a microbial host widely adopted for metabolic engineering, processes glucose through convergent peripheral pathways that ultimately yield 6-phosphogluconate. The periplasmic gluconate shunt (PGS), composed by glucose and gluconate dehydrogenases, sequentially transforms glucose into gluconate and 2-ketogluconate. Although the secretion of these organic acids by P. putida has been extensively recognized, the mechanism and spatiotemporal regulation of the PGS remained elusive thus far. To address this challenge, we adopted a dynamic C- and H-metabolic flux analysis strategy, termed D-fluxomics. D-fluxomics demonstrated that the PGS underscores a highly dynamic metabolic architecture in glucose-dependent batch cultures of P. putida, characterized by hierarchical carbon uptake by the PGS throughout the cultivation. Additionally, we show that gluconate and 2-ketogluconate accumulation and consumption can be solely explained as a result of the interplay between growth rate-coupled and decoupled metabolic fluxes. As a consequence, the formation of these acids in the PGS is inversely correlated to the bacterial growth rate-unlike the widely studied overflow metabolism of Escherichia coli and yeast. Our findings, which underline survival strategies of soil bacteria thriving in their natural environments, open new avenues for engineering P. putida towards efficient, sugar-based bioprocesses.

摘要

恶臭假单胞菌是一种广泛应用于代谢工程的微生物宿主,它通过收敛性外周途径代谢葡萄糖,最终产生6-磷酸葡萄糖酸。由葡萄糖脱氢酶和葡萄糖酸脱氢酶组成的周质葡萄糖酸分流途径(PGS)依次将葡萄糖转化为葡萄糖酸和2-酮葡萄糖酸。尽管恶臭假单胞菌分泌这些有机酸已得到广泛认可,但PGS的机制和时空调控至今仍不清楚。为应对这一挑战,我们采用了一种动态C和H代谢通量分析策略,称为D-通量组学。D-通量组学表明,在恶臭假单胞菌的葡萄糖依赖性分批培养中,PGS强调了一种高度动态的代谢结构,其特征是在整个培养过程中PGS对碳的分层摄取。此外,我们表明,葡萄糖酸和2-酮葡萄糖酸的积累和消耗可以完全解释为生长速率耦合和非耦合代谢通量之间相互作用的结果。因此,与广泛研究的大肠杆菌和酵母的溢流代谢不同,PGS中这些酸的形成与细菌生长速率呈负相关。我们的研究结果强调了土壤细菌在其自然环境中的生存策略,为将恶臭假单胞菌工程化以实现高效的基于糖的生物过程开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验