Suppr超能文献

推进用于临床知识检索的人工智能:使用ChatGPT-4和链接检索插件分析糖尿病酮症酸中毒指南的案例研究

Advancing Artificial Intelligence for Clinical Knowledge Retrieval: A Case Study Using ChatGPT-4 and Link Retrieval Plug-In to Analyze Diabetic Ketoacidosis Guidelines.

作者信息

Hamed Ehab, Sharif Anna, Eid Ahmad, Alfehaidi Alanoud, Alberry Medhat

机构信息

Family Medicine, Qatar University Health Centre, Primary Health Care Corporation, Doha, QAT.

Family Medicine, Primary Health Care Corporation, Doha, QAT.

出版信息

Cureus. 2023 Jul 15;15(7):e41916. doi: 10.7759/cureus.41916. eCollection 2023 Jul.

Abstract

Introduction This case study aimed to enhance the traceability and retrieval accuracy of ChatGPT-4 in medical text by employing a step-by-step systematic approach. The focus was on retrieving clinical answers from three international guidelines on diabetic ketoacidosis (DKA). Methods A systematic methodology was developed to guide the retrieval process. One question was asked per guideline to ensure accuracy and maintain referencing. ChatGPT-4 was utilized to retrieve answers, and the 'Link Reader' plug-in was integrated to facilitate direct access to webpages containing the guidelines. Subsequently, ChatGPT-4 was employed to compile answers while providing citations to the sources. This process was iterated 30 times per question to ensure consistency. In this report, we present our observations regarding the retrieval accuracy, consistency of responses, and the challenges encountered during the process. Results Integrating ChatGPT-4 with the 'Link Reader' plug-in demonstrated notable traceability and retrieval accuracy benefits. The AI model successfully provided relevant and accurate clinical answers based on the analyzed guidelines. Despite occasional challenges with webpage access and minor memory drift, the overall performance of the integrated system was promising. The compilation of the answers was also impressive and held significant promise for further trials. Conclusion The findings of this case study contribute to the utilization of AI text-generation models as valuable tools for medical professionals and researchers. The systematic approach employed in this case study and the integration of the 'Link Reader' plug-in offer a framework for automating medical text synthesis, asking one question at a time before compilation from different sources, which has led to improving AI models' traceability and retrieval accuracy. Further advancements and refinement of AI models and integration with other software utilities hold promise for enhancing the utility and applicability of AI-generated recommendations in medicine and scientific academia. These advancements have the potential to drive significant improvements in everyday medical practice.

摘要

引言 本案例研究旨在通过采用逐步系统的方法提高ChatGPT-4在医学文本中的可追溯性和检索准确性。重点是从三份关于糖尿病酮症酸中毒(DKA)的国际指南中检索临床答案。

方法 开发了一种系统方法来指导检索过程。每个指南提出一个问题以确保准确性并保持参考文献。利用ChatGPT-4检索答案,并集成“链接阅读器”插件以方便直接访问包含指南的网页。随后,使用ChatGPT-4编写答案并提供来源引用。每个问题重复此过程30次以确保一致性。在本报告中,我们展示了我们对检索准确性、回答一致性以及过程中遇到的挑战的观察结果。

结果 将ChatGPT-4与“链接阅读器”插件集成显示出显著的可追溯性和检索准确性优势。人工智能模型根据分析的指南成功提供了相关且准确的临床答案。尽管偶尔在网页访问和轻微的记忆偏差方面存在挑战,但集成系统的整体性能很有前景。答案的编写也令人印象深刻,对进一步试验有很大希望。

结论 本案例研究的结果有助于将人工智能文本生成模型用作医学专业人员和研究人员的宝贵工具。本案例研究中采用的系统方法以及“链接阅读器”插件的集成提供了一个用于自动化医学文本合成的框架,在从不同来源进行编译之前一次提出一个问题,这导致提高了人工智能模型的可追溯性和检索准确性。人工智能模型的进一步发展和完善以及与其他软件实用程序的集成有望提高人工智能生成的建议在医学和科学界的实用性和适用性。这些进展有可能推动日常医疗实践的显著改善。

相似文献

本文引用的文献

3
Using machine learning for healthcare treatment planning.将机器学习用于医疗保健治疗规划。
Front Artif Intell. 2023 Apr 25;6:1124182. doi: 10.3389/frai.2023.1124182. eCollection 2023.
6
Artificial intelligence-based clinical decision support in pediatrics.基于人工智能的儿科临床决策支持。
Pediatr Res. 2023 Jan;93(2):334-341. doi: 10.1038/s41390-022-02226-1. Epub 2022 Jul 29.
7
Hyperglycemic Emergencies in Adults.成人高血糖急症
Can J Diabetes. 2018 Apr;42 Suppl 1:S109-S114. doi: 10.1016/j.jcjd.2017.10.013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验