Suppr超能文献

一种基于机器学习的新型临床查询平台与传统医院急诊指南搜索的比较:用户体验和时间效率的前瞻性试点研究

Comparison of a Novel Machine Learning-Based Clinical Query Platform With Traditional Guideline Searches for Hospital Emergencies: Prospective Pilot Study of User Experience and Time Efficiency.

作者信息

Ejaz Hamza, Tsui Hon Lung Keith, Patel Mehul, Ulloa Paredes Luis Rafael, Knights Ellen, Aftab Shah Bakht, Subbe Christian Peter

机构信息

Ysbyty Gwynedd, Clinical School, Clinical Research Office, Bangor, United Kingdom.

Medwise.ai Ltd, Leeds, United Kingdom.

出版信息

JMIR Hum Factors. 2025 Feb 25;12:e52358. doi: 10.2196/52358.

Abstract

BACKGROUND

Emergency and acute medicine doctors require easily accessible evidence-based information to safely manage a wide range of clinical presentations. The inability to find evidence-based local guidelines on the trust's intranet leads to information retrieval from the World Wide Web. Artificial intelligence (AI) has the potential to make evidence-based information retrieval faster and easier.

OBJECTIVE

The aim of the study is to conduct a time-motion analysis, comparing cohorts of junior doctors using (1) an AI-supported search engine versus (2) the traditional hospital intranet. The study also aims to examine the impact of the AI-supported search engine on the duration of searches and workflow when seeking answers to clinical queries at the point of care.

METHODS

This pre- and postobservational study was conducted in 2 phases. In the first phase, clinical information searches by 10 doctors caring for acutely unwell patients in acute medicine were observed during 10 working days. Based on these findings and input from a focus group of 14 clinicians, an AI-supported, context-sensitive search engine was implemented. In the second phase, clinical practice was observed for 10 doctors for an additional 10 working days using the new search engine.

RESULTS

The hospital intranet group (n=10) had a median of 23 months of clinical experience, while the AI-supported search engine group (n=10) had a median of 54 months. Participants using the AI-supported engine conducted fewer searches. User satisfaction and query resolution rates were similar between the 2 phases. Searches with the AI-supported engine took 43 seconds longer on average. Clinicians rated the new app with a favorable Net Promoter Score of 20.

CONCLUSIONS

We report a successful feasibility pilot of an AI-driven search engine for clinical guidelines. Further development of the engine including the incorporation of large language models might improve accuracy and speed. More research is required to establish clinical impact in different user groups. Focusing on new staff at beginning of their post might be the most suitable study design.

摘要

背景

急诊与急性医学医生需要易于获取的循证信息,以便安全处理各种临床表现。无法在信托机构的内联网上找到循证的本地指南,导致他们从万维网上检索信息。人工智能(AI)有可能使循证信息检索更快、更便捷。

目的

本研究旨在进行一项时间动作分析,比较初级医生群体使用(1)人工智能支持的搜索引擎与(2)传统医院内联网的情况。该研究还旨在考察人工智能支持的搜索引擎在即时护理时寻求临床问题答案时对搜索时长和工作流程的影响。

方法

这项前后观察性研究分两个阶段进行。在第一阶段,在10个工作日内观察了10位负责急性医学中病情严重患者的医生进行临床信息搜索的情况。基于这些发现以及14位临床医生组成的焦点小组的意见,实施了一个人工智能支持的、上下文敏感的搜索引擎。在第二阶段,使用新搜索引擎对另外10位医生的临床实践进行了10个工作日的观察。

结果

医院内联网组(n = 10)的临床经验中位数为23个月,而人工智能支持的搜索引擎组(n = 10)的临床经验中位数为54个月。使用人工智能支持引擎的参与者进行的搜索较少。两个阶段的用户满意度和问题解决率相似。使用人工智能支持引擎的搜索平均耗时多43秒。临床医生对新应用的净推荐值评分为20,评价良好。

结论

我们报告了一项针对临床指南的人工智能驱动搜索引擎的成功可行性试点。该引擎的进一步开发,包括纳入大语言模型,可能会提高准确性和速度。需要更多研究来确定其在不同用户群体中的临床影响。关注新入职员工可能是最合适的研究设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b599/11878475/484fa3fe61fc/humanfactors-v12-e52358-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验