Suppr超能文献

基于 MeSH 树中特定语义类型的共现对耐多药肺结核药物的研究趋势进行映射:对 PubMed 文献(1966-2020 年)进行的文献计量和可视化分析。

Mapping Research Trends of Medications for Multidrug-Resistant Pulmonary Tuberculosis Based on the Co-Occurrence of Specific Semantic Types in the MeSH Tree: A Bibliometric and Visualization-Based Analysis of PubMed Literature (1966-2020).

机构信息

Library of China Medical University, Shenyang, Liaoning, People's Republic of China.

School of Health Management, China Medical University, Shenyang, Liaoning, People's Republic of China.

出版信息

Drug Des Devel Ther. 2023 Jul 10;17:2035-2049. doi: 10.2147/DDDT.S409604. eCollection 2023.

Abstract

BACKGROUND

Before the COVID-19 pandemic, tuberculosis is the leading cause of death from a single infectious agent worldwide for the past 30 years. Progress in the control of tuberculosis has been undermined by the emergence of multidrug-resistant tuberculosis. The aim of the study is to reveal the trends of research on medications for multidrug-resistant pulmonary tuberculosis (MDR-PTB) through a novel method of bibliometrics that co-occurs specific semantic Medical Subject Headings (MeSH).

METHODS

PubMed was used to identify the original publications related to medications for MDR-PTB. An R package for text mining of PubMed, pubMR, was adopted to extract data and construct the co-occurrence matrix-specific semantic types. Biclustering analysis of high-frequency MeSH term co-occurrence matrix was performed by gCLUTO. Scientific knowledge maps were constructed by VOSviewer to create overlay visualization and density visualization. Burst detection was performed by CiteSpace to identify the future research hotspots.

RESULTS

Two hundred and eight substances (chemical, drug, protein) and 147 diseases related to MDR-PTB were extracted to form a specific semantic co-occurrence matrix. MeSH terms with frequency greater than or equal to six were selected to construct high-frequency co-occurrence matrix (42 × 20) of specific semantic types contains 42 substances and 20 diseases. Biclustering analysis divided the medications for MDR-PTB into five clusters and reflected the characteristics of drug composition. The overlay map indicated the average age gradients of 42 high-frequency drugs. Fifteen top keywords and 37 top terms with the strongest citation bursts were detected.

CONCLUSION

This study evaluated the literatures related to MDR-PTB drug therapy, providing a co-occurrence matrix model based on the specific semantic types and a new attempt for text knowledge mining. Compared with the macro knowledge structure or hot spot analysis, this method may have a wider scope of application and a more in-depth degree of analysis.

摘要

背景

在 COVID-19 大流行之前,结核病是过去 30 年来全球范围内单一感染源导致死亡的主要原因。抗药性结核病的出现破坏了结核病控制的进展。本研究的目的是通过一种新的共现特定语义医学主题词(MeSH)的文献计量学方法,揭示耐多药肺结核(MDR-PTB)药物治疗的研究趋势。

方法

使用 PubMed 确定与 MDR-PTB 药物治疗相关的原始出版物。采用用于 PubMed 文本挖掘的 R 包 pubMR 提取数据并构建共现矩阵特定语义类型。通过 gCLUTO 对高频 MeSH 术语共现矩阵进行双聚类分析。使用 VOSviewer 构建科学知识图谱,创建覆盖可视化和密度可视化。通过 CiteSpace 进行突发检测,确定未来的研究热点。

结果

共提取出 280 种物质(化学物质、药物、蛋白质)和 147 种与 MDR-PTB 相关的疾病,形成特定语义共现矩阵。选择频率大于或等于 6 的 MeSH 术语构建高频共现矩阵(42×20),特定语义类型包含 42 种物质和 20 种疾病。双聚类分析将 MDR-PTB 药物分为五类,反映了药物组成的特点。叠加图显示了 42 种高频药物的平均年龄梯度。检测到 15 个顶级关键字和 37 个引用突发最强的顶级术语。

结论

本研究评估了与 MDR-PTB 药物治疗相关的文献,提供了基于特定语义类型的共现矩阵模型,为文本知识挖掘提供了新的尝试。与宏观知识结构或热点分析相比,该方法可能具有更广泛的应用范围和更深入的分析程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b51/10348322/8b955d15c35e/DDDT-17-2035-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验