Suppr超能文献

使用活细胞 STED 成像技术可视化神经元细胞模型中线粒体内膜超微结构。

Using Live Cell STED Imaging to Visualize Mitochondrial Inner Membrane Ultrastructure in Neuronal Cell Models.

机构信息

Center for Open Research Resources and Equipment, University of Connecticut.

Department of Molecular and Cell Biology, University of Connecticut.

出版信息

J Vis Exp. 2023 Jun 30(196). doi: 10.3791/65561.

Abstract

Mitochondria play many essential roles in the cell, including energy production, regulation of Ca homeostasis, lipid biosynthesis, and production of reactive oxygen species (ROS). These mitochondria-mediated processes take on specialized roles in neurons, coordinating aerobic metabolism to meet the high energy demands of these cells, modulating Ca signaling, providing lipids for axon growth and regeneration, and tuning ROS production for neuronal development and function. Mitochondrial dysfunction is therefore a central driver in neurodegenerative diseases. Mitochondrial structure and function are inextricably linked. The morphologically complex inner membrane with structural infolds called cristae harbors many molecular systems that perform the signature processes of the mitochondrion. The architectural features of the inner membrane are ultrastructural and therefore, too small to be visualized by traditional diffraction-limited resolved microscopy. Thus, most insights on mitochondrial ultrastructure have come from electron microscopy on fixed samples. However, emerging technologies in super-resolution fluorescence microscopy now provide resolution down to tens of nanometers, allowing visualization of ultrastructural features in live cells. Super-resolution imaging therefore offers an unprecedented ability to directly image fine details of mitochondrial structure, nanoscale protein distributions, and cristae dynamics, providing fundamental new insights that link mitochondria to human health and disease. This protocol presents the use of stimulated emission depletion (STED) super-resolution microscopy to visualize the mitochondrial ultrastructure of live human neuroblastoma cells and primary rat neurons. This procedure is organized into five sections: (1) growth and differentiation of the SH-SY5Y cell line, (2) isolation, plating, and growth of primary rat hippocampal neurons, (3) procedures for staining cells for live STED imaging, (4) procedures for live cell STED experiments using a STED microscope for reference, and (5) guidance for segmentation and image processing using examples to measure and quantify morphological features of the inner membrane.

摘要

线粒体在细胞中发挥着许多重要作用,包括能量产生、钙稳态调节、脂质生物合成和活性氧物种(ROS)的产生。这些由线粒体介导的过程在神经元中具有专门的作用,协调需氧代谢以满足这些细胞的高能量需求,调节钙信号,为轴突生长和再生提供脂质,并调整 ROS 产生以促进神经元发育和功能。因此,线粒体功能障碍是神经退行性疾病的核心驱动因素。线粒体的结构和功能是紧密相连的。形态复杂的内膜具有结构折叠,称为嵴,其中包含许多执行线粒体标志性过程的分子系统。内膜的结构特征是超微结构的,因此太小而无法通过传统的衍射受限分辨率显微镜观察到。因此,大多数关于线粒体超微结构的见解来自于对固定样本的电子显微镜。然而,超分辨率荧光显微镜的新兴技术现在提供了分辨率可达数十纳米的分辨率,允许在活细胞中可视化超微结构特征。因此,超分辨率成像提供了一种前所未有的能力,可以直接观察线粒体结构、纳米尺度蛋白质分布和嵴动力学的细微细节,为将线粒体与人类健康和疾病联系起来提供了基本的新见解。本协议介绍了使用受激发射损耗(STED)超分辨率显微镜来可视化活人类神经母细胞瘤细胞和原代大鼠神经元的线粒体超微结构。该程序分为五个部分:(1)SH-SY5Y 细胞系的生长和分化,(2)原代大鼠海马神经元的分离、接种和生长,(3)用于活 STED 成像染色细胞的程序,(4)使用 STED 显微镜进行活细胞 STED 实验的程序,(5)使用示例进行分割和图像处理的指导,以测量和量化内膜的形态特征。

相似文献

2
Live-cell STED nanoscopy of mitochondrial cristae.
Sci Rep. 2019 Aug 27;9(1):12419. doi: 10.1038/s41598-019-48838-2.
3
Mitochondrial STED Imaging and Membrane Potential Monitoring with a Cationic Molecular Probe.
Small Methods. 2024 Dec;8(12):e2400525. doi: 10.1002/smtd.202400525. Epub 2024 Sep 13.
4
STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8936-41. doi: 10.1073/pnas.1301820110. Epub 2013 May 15.
5
An aldehyde-crosslinking mitochondrial probe for STED imaging in fixed cells.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2317703121. doi: 10.1073/pnas.2317703121. Epub 2024 Apr 30.
7
A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15817-15822. doi: 10.1073/pnas.1905924116. Epub 2019 Jul 23.
8
Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae.
Front Cell Dev Biol. 2020 Jul 15;8:617. doi: 10.3389/fcell.2020.00617. eCollection 2020.
9
Mitochondrial structural variations in the process of mitophagy.
J Biophotonics. 2022 May;15(5):e202200006. doi: 10.1002/jbio.202200006. Epub 2022 Feb 10.
10
Uncovering the impact of UV radiation on mitochondria in dermal cells: a STED nanoscopy study.
Sci Rep. 2024 Apr 15;14(1):8675. doi: 10.1038/s41598-024-55778-z.

引用本文的文献

1
Molecular machineries shaping the mitochondrial inner membrane.
Nat Rev Mol Cell Biol. 2025 May 14. doi: 10.1038/s41580-025-00854-z.
2
Nootropic foods in neurodegenerative diseases: mechanisms, challenges, and future.
Transl Neurodegener. 2025 Apr 3;14(1):17. doi: 10.1186/s40035-025-00476-7.

本文引用的文献

1
In situ architecture of Opa1-dependent mitochondrial cristae remodeling.
EMBO J. 2024 Feb;43(3):391-413. doi: 10.1038/s44318-024-00027-2. Epub 2024 Jan 15.
2
Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202204093. Epub 2023 Feb 14.
3
How does density of the inner mitochondrial membrane influence mitochondrial performance?
Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R242-R248. doi: 10.1152/ajpregu.00254.2022. Epub 2022 Dec 26.
4
Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain.
Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2215799119. doi: 10.1073/pnas.2215799119. Epub 2022 Dec 19.
5
Mitochondrial cristae architecture protects against mtDNA release and inflammation.
Cell Rep. 2022 Dec 6;41(10):111774. doi: 10.1016/j.celrep.2022.111774.
6
Neural regeneration research model to be explored: SH-SY5Y human neuroblastoma cells.
Neural Regen Res. 2023 Jun;18(6):1265-1266. doi: 10.4103/1673-5374.358621.
8
Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease.
Ultrastruct Pathol. 2022 Sep 3;46(5):462-475. doi: 10.1080/01913123.2022.2100951. Epub 2022 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验