Center for Open Research Resources and Equipment, University of Connecticut.
Department of Molecular and Cell Biology, University of Connecticut.
J Vis Exp. 2023 Jun 30(196). doi: 10.3791/65561.
Mitochondria play many essential roles in the cell, including energy production, regulation of Ca homeostasis, lipid biosynthesis, and production of reactive oxygen species (ROS). These mitochondria-mediated processes take on specialized roles in neurons, coordinating aerobic metabolism to meet the high energy demands of these cells, modulating Ca signaling, providing lipids for axon growth and regeneration, and tuning ROS production for neuronal development and function. Mitochondrial dysfunction is therefore a central driver in neurodegenerative diseases. Mitochondrial structure and function are inextricably linked. The morphologically complex inner membrane with structural infolds called cristae harbors many molecular systems that perform the signature processes of the mitochondrion. The architectural features of the inner membrane are ultrastructural and therefore, too small to be visualized by traditional diffraction-limited resolved microscopy. Thus, most insights on mitochondrial ultrastructure have come from electron microscopy on fixed samples. However, emerging technologies in super-resolution fluorescence microscopy now provide resolution down to tens of nanometers, allowing visualization of ultrastructural features in live cells. Super-resolution imaging therefore offers an unprecedented ability to directly image fine details of mitochondrial structure, nanoscale protein distributions, and cristae dynamics, providing fundamental new insights that link mitochondria to human health and disease. This protocol presents the use of stimulated emission depletion (STED) super-resolution microscopy to visualize the mitochondrial ultrastructure of live human neuroblastoma cells and primary rat neurons. This procedure is organized into five sections: (1) growth and differentiation of the SH-SY5Y cell line, (2) isolation, plating, and growth of primary rat hippocampal neurons, (3) procedures for staining cells for live STED imaging, (4) procedures for live cell STED experiments using a STED microscope for reference, and (5) guidance for segmentation and image processing using examples to measure and quantify morphological features of the inner membrane.
线粒体在细胞中发挥着许多重要作用,包括能量产生、钙稳态调节、脂质生物合成和活性氧物种(ROS)的产生。这些由线粒体介导的过程在神经元中具有专门的作用,协调需氧代谢以满足这些细胞的高能量需求,调节钙信号,为轴突生长和再生提供脂质,并调整 ROS 产生以促进神经元发育和功能。因此,线粒体功能障碍是神经退行性疾病的核心驱动因素。线粒体的结构和功能是紧密相连的。形态复杂的内膜具有结构折叠,称为嵴,其中包含许多执行线粒体标志性过程的分子系统。内膜的结构特征是超微结构的,因此太小而无法通过传统的衍射受限分辨率显微镜观察到。因此,大多数关于线粒体超微结构的见解来自于对固定样本的电子显微镜。然而,超分辨率荧光显微镜的新兴技术现在提供了分辨率可达数十纳米的分辨率,允许在活细胞中可视化超微结构特征。因此,超分辨率成像提供了一种前所未有的能力,可以直接观察线粒体结构、纳米尺度蛋白质分布和嵴动力学的细微细节,为将线粒体与人类健康和疾病联系起来提供了基本的新见解。本协议介绍了使用受激发射损耗(STED)超分辨率显微镜来可视化活人类神经母细胞瘤细胞和原代大鼠神经元的线粒体超微结构。该程序分为五个部分:(1)SH-SY5Y 细胞系的生长和分化,(2)原代大鼠海马神经元的分离、接种和生长,(3)用于活 STED 成像染色细胞的程序,(4)使用 STED 显微镜进行活细胞 STED 实验的程序,(5)使用示例进行分割和图像处理的指导,以测量和量化内膜的形态特征。