College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2317703121. doi: 10.1073/pnas.2317703121. Epub 2024 Apr 30.
Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.
化学固定标本的荧光标记,特别是免疫标记,在超分辨率成像中起着至关重要的作用,因为它提供了一种方便的方法来可视化细胞结构,如线粒体或生物分子的分布,具有很高的细节。尽管已经开发出各种不同的探针,可以实现活细胞中线粒体的超分辨率受激发射损耗(STED)成像,但大多数这些依赖膜电位的荧光染料在化学固定后不能很好地保留在线粒体中。这种缺乏合适的线粒体探针的情况限制了 STED 成像在活细胞样本中的应用。在这项研究中,我们引入了一种线粒体特异性探针 PK Mito Orange FX(PKMO FX),它具有固定驱动的交联结构域,并在线粒体的内膜中积累。它在化学固定后表现出高荧光保留率,并在 775nm 处有效耗尽,从而能够在醛固定前后进行纳米级成像。我们证明了这种探针与传统免疫标记以及其他常用于固定样本荧光标记的策略的兼容性。此外,我们还表明 PKMO FX 有助于相关的超分辨率光和电子显微镜,通过特征性的线粒体模式实现多色荧光图像和透射 EM 图像的关联。我们的探针进一步扩展了线粒体工具包,用于纳米分辨率的多模式显微镜。