Melnik Svetlana, Ryzhov Alexander, Kiselev Alexei, Radenovic Aleksandra, Weil Tanja, Stevenson Keith J, Artemov Vasily G
Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany.
Center for Low-Emission Transport, Austrian Institute of Technology, 1210 Vienna, Austria.
J Phys Chem Lett. 2023 Jul 27;14(29):6572-6576. doi: 10.1021/acs.jpclett.3c01498. Epub 2023 Jul 17.
The electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic "water-only" battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes. The efficiency of the cell in the 1-100 nm pore size range shows a maximum energy density at 3 nm, challenging the region of the current metal-ion batteries. Our results establish the electrodynamic fundamentals of nanoconfined water and pave the way for low-cost and inherently safe energy storage solutions that are much needed in the renewable energy sector.
与大块水相比,纳米受限水的电动力学已被证明发生了巨大变化,为安全的电化学系统开辟了空间。我们展示了一种纳米流体“仅水”电池,该电池利用了纯水在强限制条件下异常高的电解性能。该装置由碳基纳米材料的膜电极组件组成,在隔膜和电极之间形成连续互连的充满水的纳米通道。该电池在1-100纳米孔径范围内的效率在3纳米处显示出最大能量密度,挑战了当前金属离子电池的领域。我们的结果确立了纳米受限水的电动力学基本原理,并为可再生能源领域急需的低成本且本质安全的储能解决方案铺平了道路。