Li Yuhao, Li Zhongwu, Aydin Fikret, Quan Jana, Chen Xi, Yao Yun-Chiao, Zhan Cheng, Chen Yunfei, Pham Tuan Anh, Noy Aleksandr
Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
Sci Adv. 2020 Sep 16;6(38). doi: 10.1126/sciadv.aba9966. Print 2020 Sep.
Carbon nanotube (CNT) pores, which mimic the structure of the aquaporin channels, support extremely high water transport rates that make them strong candidates for building artificial water channels and high-performance membranes. Here, we measure water and ion permeation through 0.8-nm-diameter CNT porins (CNTPs)-short CNT segments embedded in lipid membranes-under optimized experimental conditions. Measured activation energy of water transport through the CNTPs agrees with the barrier values typical for single-file water transport. Well-tempered metadynamics simulations of water transport in CNTPs also report similar activation energy values and provide molecular-scale details of the mechanism for water entry into these channels. CNTPs strongly reject chloride ions and show water-salt permselectivity values comparable to those of commercial desalination membranes.
碳纳米管(CNT)孔模仿水通道蛋白通道的结构,支持极高的水传输速率,这使其成为构建人工水通道和高性能膜的有力候选者。在此,我们在优化的实验条件下,测量了通过嵌入脂质膜中的0.8纳米直径碳纳米管孔蛋白(CNTPs)——短碳纳米管片段——的水和离子渗透。测得的通过CNTPs的水传输活化能与单排水分子传输的典型势垒值相符。对CNTPs中水传输的自适应加权元动力学模拟也报告了类似的活化能值,并提供了水分子进入这些通道机制的分子尺度细节。CNTPs强烈排斥氯离子,其水盐选择透过性值与商业脱盐膜相当。