Suppr超能文献

模块化临床决策支持网络(MoDN)——针对不断变化的临床环境的可更新、可解释且便携的预测。

Modular Clinical Decision Support Networks (MoDN)-Updatable, interpretable, and portable predictions for evolving clinical environments.

作者信息

Trottet Cécile, Vogels Thijs, Keitel Kristina, Kulinkina Alexandra V, Tan Rainer, Cobuccio Ludovico, Jaggi Martin, Hartley Mary-Anne

机构信息

Intelligent Global Health Research Group, Machine Learning and Optimization Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Division of Pediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland.

出版信息

PLOS Digit Health. 2023 Jul 17;2(7):e0000108. doi: 10.1371/journal.pdig.0000108. eCollection 2023 Jul.

Abstract

Clinical Decision Support Systems (CDSS) have the potential to improve and standardise care with probabilistic guidance. However, many CDSS deploy static, generic rule-based logic, resulting in inequitably distributed accuracy and inconsistent performance in evolving clinical environments. Data-driven models could resolve this issue by updating predictions according to the data collected. However, the size of data required necessitates collaborative learning from analogous CDSS's, which are often imperfectly interoperable (IIO) or unshareable. We propose Modular Clinical Decision Support Networks (MoDN) which allow flexible, privacy-preserving learning across IIO datasets, as well as being robust to the systematic missingness common to CDSS-derived data, while providing interpretable, continuous predictive feedback to the clinician. MoDN is a novel decision tree composed of feature-specific neural network modules that can be combined in any number or combination to make any number or combination of diagnostic predictions, updatable at each step of a consultation. The model is validated on a real-world CDSS-derived dataset, comprising 3,192 paediatric outpatients in Tanzania. MoDN significantly outperforms 'monolithic' baseline models (which take all features at once at the end of a consultation) with a mean macro F1 score across all diagnoses of 0.749 vs 0.651 for logistic regression and 0.620 for multilayer perceptron (p < 0.001). To test collaborative learning between IIO datasets, we create subsets with various percentages of feature overlap and port a MoDN model trained on one subset to another. Even with only 60% common features, fine-tuning a MoDN model on the new dataset or just making a composite model with MoDN modules matched the ideal scenario of sharing data in a perfectly interoperable setting. MoDN integrates into consultation logic by providing interpretable continuous feedback on the predictive potential of each question in a CDSS questionnaire. The modular design allows it to compartmentalise training updates to specific features and collaboratively learn between IIO datasets without sharing any data.

摘要

临床决策支持系统(CDSS)有潜力通过概率性指导来改善和规范医疗护理。然而,许多CDSS采用静态的、基于通用规则的逻辑,导致在不断变化的临床环境中准确性分布不均且性能不一致。数据驱动模型可以通过根据收集到的数据更新预测来解决这个问题。然而,所需数据的规模需要从类似的CDSS进行协作学习,而这些CDSS往往存在不完全可互操作(IIO)或不可共享的问题。我们提出了模块化临床决策支持网络(MoDN),它允许在IIO数据集之间进行灵活的、隐私保护的学习,并且对CDSS衍生数据中常见的系统性缺失具有鲁棒性,同时为临床医生提供可解释的、连续的预测反馈。MoDN是一种新颖的决策树,由特定特征的神经网络模块组成,可以以任意数量或组合进行组合,以做出任意数量或组合的诊断预测,并且在会诊的每个步骤都可更新。该模型在一个来自现实世界的CDSS数据集上进行了验证,该数据集包含坦桑尼亚的3192名儿科门诊患者。MoDN显著优于“整体式”基线模型(在会诊结束时一次性考虑所有特征),所有诊断的平均宏F1分数,逻辑回归为0.651,多层感知器为0.620,而MoDN为0.749(p < 0.001)。为了测试IIO数据集之间的协作学习,我们创建了具有不同特征重叠百分比的子集,并将在一个子集上训练的MoDN模型移植到另一个子集上。即使只有60%的共同特征,在新数据集上对MoDN模型进行微调或仅使用匹配的MoDN模块创建一个复合模型,也能与在完全可互操作的环境中共享数据的理想场景相匹配。MoDN通过对CDSS问卷中每个问题的预测潜力提供可解释的连续反馈,集成到会诊逻辑中。模块化设计允许它将训练更新划分为特定特征,并在IIO数据集之间进行协作学习,而无需共享任何数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7db9/10351690/14d57fb4de09/pdig.0000108.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验