Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany.
Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Munich, Germany.
J Integr Plant Biol. 2022 Sep;64(9):1821-1832. doi: 10.1111/jipb.13320. Epub 2022 Aug 10.
Under natural conditions, photosynthesis has to be adjusted to fluctuating light intensities. Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II (PSII) by a process called non-photochemical quenching (NPQ). Upon fast transition from light to shade, plants lose light energy by a relatively slow relaxation from photoprotection. Combined overexpression of violaxanthin de-epoxidase (VDE), PSII subunit S (PsbS) and zeaxanthin epoxidase (ZEP) in tobacco accelerates relaxation from photoprotection, and increases photosynthetic productivity. In Arabidopsis, expression of the same three genes (VPZ) resulted in a more rapid photoprotection but growth of the transgenic plants was impaired. Here we report on VPZ expressing potato plants grown under various light regimes. Similar to tobacco and Arabidopsis, induction and relaxation of NPQ was accelerated under all growth conditions tested, but did not cause an overall increased photosynthetic rate or growth of transgenic plants. Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions. Under control conditions, levels of the phytohormone abscisic acid (ABA) were found to be elevated, indicating an increased violaxanthin availability in VPZ plants. However, the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions. The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction. Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.
在自然条件下,光合作用必须适应波动的光强。暴露在高光下的叶片通过一种称为非光化学猝灭(NPQ)的过程以热的形式耗散过量的光能量。在从光到阴影的快速过渡中,植物通过相对缓慢的光保护松弛失去光能量。在烟草中联合过表达紫黄质脱环氧化酶(VDE)、PSII 亚基 S(PsbS)和玉米黄质环氧化酶(ZEP)加速了从光保护的松弛,并提高了光合作用生产力。在拟南芥中,表达相同的三个基因(VPZ)导致更快的光保护,但转基因植物的生长受到损害。在这里,我们报告了在各种光照条件下生长的表达 VPZ 的马铃薯植物。与烟草和拟南芥相似,在所有测试的生长条件下,NPQ 的诱导和松弛都得到了加速,但并没有导致转基因植物的整体光合速率或生长增加。与对照植物相比,在恒定光照条件下,表达 VPZ 的植物的块茎产量没有改变,甚至在波动光照条件下降低。在对照条件下,发现植物激素脱落酸(ABA)的水平升高,表明 VPZ 植物中存在更多的紫黄质。然而,增加的基础 ABA 水平并没有提高 VPZ 转基因马铃薯植物在温室条件下的耐旱性。未能从改善的光保护中受益的原因很可能是由于 NPQ 诱导过强,导致高光条件下的辐射利用效率降低。在未来减轻这种负面影响可能有助于提高表达 VPZ 的马铃薯植物的光合作用性能。