Suppr超能文献

美国诊断错误导致的严重危害负担。

Burden of serious harms from diagnostic error in the USA.

作者信息

Newman-Toker David E, Nassery Najlla, Schaffer Adam C, Yu-Moe Chihwen Winnie, Clemens Gwendolyn D, Wang Zheyu, Zhu Yuxin, Saber Tehrani Ali S, Fanai Mehdi, Hassoon Ahmed, Siegal Dana

机构信息

Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA

Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

BMJ Qual Saf. 2024 Jan 19;33(2):109-120. doi: 10.1136/bmjqs-2021-014130.

Abstract

BACKGROUND

Diagnostic errors cause substantial preventable harms worldwide, but rigorous estimates for total burden are lacking. We previously estimated diagnostic error and serious harm rates for key dangerous diseases in major disease categories and validated plausible ranges using clinical experts.

OBJECTIVE

We sought to estimate the annual US burden of serious misdiagnosis-related harms (permanent morbidity, mortality) by combining prior results with rigorous estimates of disease incidence.

METHODS

Cross-sectional analysis of US-based nationally representative observational data. We estimated annual incident vascular events and infections from 21.5 million (M) sampled US hospital discharges (2012-2014). Annual new cancers were taken from US-based registries (2014). Years were selected for coding consistency with prior literature. Disease-specific incidences for 15 major vascular events, infections and cancers ('Big Three' categories) were multiplied by literature-based rates to derive diagnostic errors and serious harms. We calculated uncertainty estimates using Monte Carlo simulations. Validity checks included sensitivity analyses and comparison with prior published estimates.

RESULTS

Annual US incidence was 6.0 M vascular events, 6.2 M infections and 1.5 M cancers. Per 'Big Three' dangerous disease case, weighted mean error and serious harm rates were 11.1% and 4.4%, respectively. Extrapolating to all diseases (including non-'Big Three' dangerous disease categories), we estimated total serious harms annually in the USA to be 795 000 (plausible range 598 000-1 023 000). Sensitivity analyses using more conservative assumptions estimated 549 000 serious harms. Results were compatible with setting-specific serious harm estimates from inpatient, emergency department and ambulatory care. The 15 dangerous diseases accounted for 50.7% of total serious harms and the top 5 (stroke, sepsis, pneumonia, venous thromboembolism and lung cancer) accounted for 38.7%.

CONCLUSION

An estimated 795 000 Americans become permanently disabled or die annually across care settings because dangerous diseases are misdiagnosed. Just 15 diseases account for about half of all serious harms, so the problem may be more tractable than previously imagined.

摘要

背景

诊断错误在全球范围内导致了大量可预防的伤害,但目前缺乏对总体负担的精确估计。我们之前估计了主要疾病类别中关键危险疾病的诊断错误率和严重伤害率,并通过临床专家验证了合理范围。

目的

我们试图通过将先前的结果与疾病发病率的精确估计相结合,来估算美国每年因严重误诊相关伤害(永久性发病率、死亡率)造成的负担。

方法

对基于美国全国代表性的观察数据进行横断面分析。我们从2150万份美国医院出院样本(2012 - 2014年)中估算每年的血管事件和感染事件发生率。每年的新发癌症病例数来自美国的登记处(2014年)。所选年份是为了与先前文献的编码保持一致。将15种主要血管事件、感染和癌症(“三大类”)的疾病特异性发病率乘以基于文献的比率,以得出诊断错误和严重伤害情况。我们使用蒙特卡洛模拟计算不确定性估计值。有效性检查包括敏感性分析以及与先前发表的估计值进行比较。

结果

美国每年的发病率为600万例血管事件、620万例感染和150万例癌症。对于每例“三大类”危险疾病病例,加权平均错误率和严重伤害率分别为11.1%和4.4%。推断到所有疾病(包括非“三大类”危险疾病类别),我们估计美国每年因严重误诊造成的伤害总数为79.5万例(合理范围为59.8万 - 102.3万例)。使用更保守假设的敏感性分析估计严重伤害病例数为54.9万例。结果与住院、急诊科和门诊护理中特定环境下的严重伤害估计值相符。这15种危险疾病占严重伤害总数的50.7%,其中前5种疾病(中风、败血症、肺炎、静脉血栓栓塞和肺癌)占38.7%。

结论

据估计,由于危险疾病被误诊,美国每年约有79.5万人在不同医疗环境中导致永久性残疾或死亡。仅15种疾病就占所有严重伤害的约一半,因此这个问题可能比之前想象的更容易解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2d8/10792094/19fc83278df5/nihms-1942131-f0001.jpg

相似文献

1
Burden of serious harms from diagnostic error in the USA.美国诊断错误导致的严重危害负担。
BMJ Qual Saf. 2024 Jan 19;33(2):109-120. doi: 10.1136/bmjqs-2021-014130.

引用本文的文献

3
Diagnostic Reasoning in Surgical Pathology.外科病理学中的诊断推理
J Eval Clin Pract. 2025 Aug;31(5):e70219. doi: 10.1111/jep.70219.
5
Cognitive bias in clinical large language models.临床大语言模型中的认知偏差。
NPJ Digit Med. 2025 Jul 10;8(1):428. doi: 10.1038/s41746-025-01790-0.
8
Human-AI collectives most accurately diagnose clinical vignettes.人类与人工智能的协作能最准确地诊断临床案例。
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2426153122. doi: 10.1073/pnas.2426153122. Epub 2025 Jun 13.
9
Editorial: Computational genomic and precision medicine.社论:计算基因组学与精准医学
Front Genet. 2025 May 29;16:1631668. doi: 10.3389/fgene.2025.1631668. eCollection 2025.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验