Suppr超能文献

预测伊朗皮肤利什曼病病媒和储存宿主的当前和未来高风险地区。

Predicting current and future high-risk areas for vectors and reservoirs of cutaneous leishmaniasis in Iran.

机构信息

Department of Vector Biology and Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Zoonoses Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2023 Jul 17;13(1):11546. doi: 10.1038/s41598-023-38515-w.

Abstract

Climate change will affect the distribution of species in the future. To determine the vulnerable areas relating to CL in Iran, we applied two models, MaxEnt and RF, for the projection of the future distribution of the main vectors and reservoirs of CL. The results of the models were compared in terms of performance, species distribution maps, and the gain, loss, and stable areas. The models provided a reasonable estimate of species distribution. The results showed that the Northern and Southern counties of Iran, which currently do not have a high incidence of CL may witness new foci in the future. The Western, and Southwestern regions of the Country, which currently have high habitat suitability for the presence of some vectors and reservoirs, will probably significantly decrease in the future. Furthermore, the most stable areas are for T. indica and M. hurrianae in the future. So that, this species may remain a major reservoir in areas that are present under current conditions. With more local studies in the field of identifying vulnerable areas to CL, it can be suggested that the national CL control guidelines should be revised to include a section as a climate change adaptation plan.

摘要

气候变化将影响未来物种的分布。为了确定与伊朗裂谷热相关的脆弱地区,我们应用了 MaxEnt 和 RF 两种模型,对裂谷热的主要传播媒介和宿主的未来分布进行了预测。从性能、物种分布图谱以及增益、损失和稳定区等方面对模型的结果进行了比较。模型对物种分布提供了合理的估计。结果表明,目前裂谷热发病率不高的伊朗北部和南部各县,未来可能会出现新的发病点。目前某些传播媒介和宿主存在的高栖息地适宜性的西部和西南部地区,未来可能会大幅减少。此外,未来 T. indica 和 M. hurrianae 的最稳定地区。因此,在目前情况下,这些物种可能仍然是主要的宿主。随着在裂谷热脆弱地区识别领域进行更多的本地研究,可以建议修订国家裂谷热控制指南,将气候变化适应计划纳入其中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a16e/10352301/a2fd9e6cf27f/41598_2023_38515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验