Suppr超能文献

MRI 放射组学用于非小细胞肺癌脑转移亚病理分类:一项机器学习、多中心研究。

MRI radiomics for brain metastasis sub-pathology classification from non-small cell lung cancer: a machine learning, multicenter study.

机构信息

Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.

出版信息

Phys Eng Sci Med. 2023 Sep;46(3):1309-1320. doi: 10.1007/s13246-023-01300-0. Epub 2023 Jul 17.

Abstract

The objective of this study is to develop a machine-learning model that can accurately distinguish between different histologic types of brain lesions in patients with non-small cell lung cancer (NSCLC) when it is not safe or feasible to perform a biopsy. To achieve this goal, the study utilized data from two patient cohorts: 116 patients from Xiangya Hospital and 35 patients from Yueyang Central Hospital. A total of eight machine learning algorithms, including Xgboost, were compared. Additionally, a 3-dimensional convolutional neural network was trained using transfer learning to further evaluate the performance of these models. The SHapley Additive exPlanations (SHAP) method was developed to determine the most important features in the best-performing model after hyperparameter optimization. The results showed that the area under the curve (AUC) for the classification of brain lesions as either lung adenocarcinoma or squamous carcinoma ranged from 0.60 to 0.87. The model based on single radiomics features extracted from contrast-enhanced T1 MRI and utilizing the Xgboost algorithm demonstrated the highest performance (AUC: 0.85) in the internal validation set and adequate performance (AUC: 0.80) in the independent external validation set. The SHAP values also revealed the impact of individual features on the classification results. In conclusion, the use of a radiomics model incorporating contrast-enhanced T1 MRI, Xgboost, and SHAP algorithms shows promise in accurately and interpretably identifying brain lesions in patients with NSCLC.

摘要

本研究旨在开发一种机器学习模型,当对非小细胞肺癌(NSCLC)患者进行活检既不安全也不可行时,该模型能够准确区分不同的脑病变组织学类型。为了实现这一目标,该研究利用了来自湘雅医院的 116 名患者和岳阳中心医院的 35 名患者的数据。比较了包括 Xgboost 在内的八种机器学习算法。此外,还使用迁移学习训练了一个 3 维卷积神经网络,以进一步评估这些模型的性能。在进行超参数优化后,使用 SHapley Additive exPlanations(SHAP)方法确定了表现最佳模型中的最重要特征。结果表明,用于分类脑病变为肺腺癌或鳞状细胞癌的曲线下面积(AUC)范围为 0.60 至 0.87。基于从增强 T1 MRI 中提取的单一放射组学特征并利用 Xgboost 算法的模型在内部验证集中表现出最高性能(AUC:0.85),在独立外部验证集中表现出足够的性能(AUC:0.80)。SHAP 值还揭示了单个特征对分类结果的影响。总之,使用包含增强 T1 MRI、Xgboost 和 SHAP 算法的放射组学模型有望准确且可解释地识别 NSCLC 患者的脑病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验