Webster-Clark Michael, Toh Sengwee, Arnold Jonathan, McTigue Kathleen M, Carton Thomas, Platt Robert
Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada.
Department of Epidemiology, Gillings Schools of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, USA.
Pharmacoepidemiol Drug Saf. 2023 Dec;32(12):1360-1367. doi: 10.1002/pds.5666. Epub 2023 Jul 18.
While much has been written about how distributed networks address internal validity, external validity is rarely discussed. We aimed to define key terms related to external validity, discuss how they relate to distributed networks, and identify how three networks (the US Food and Drug Administration's Sentinel System, the Canadian Network for Observational Drug Effect Studies [CNODES], and the National Patient Centered Clinical Research Network [PCORnet]) deal with external validity.
We define external validity, target populations, target validity, generalizability, and transportability and describe how each relates to distributed networks. We then describe Sentinel, CNODES, and PCORnet and how each approaches these concepts, including a sample case study.
Each network approaches external validity differently. As its target population is US citizens and it includes only US data, Sentinel primarily worries about lack of external validity by not including some segments of the population. The fact that CNODES includes Canadian, United States, and United Kingdom data forces them to seriously consider whether the United States and United Kingdom data will be transportable to Canadian citizens when they meta-analyze database-specific estimates. PCORnet, with its focus on study-specific cohorts and pragmatic trials, conducts more case-by-case explorations of external validity for each new analytic data set it generates.
There is no one-size-fits-all approach to external validity within distributed networks. With these networks and comparisons between their findings becoming a key part of pharmacoepidemiology, there is a need to adapt tools for improving external validity to the distributed network setting.
虽然已有大量关于分布式网络如何解决内部效度问题的论述,但外部效度却很少被讨论。我们旨在定义与外部效度相关的关键术语,探讨它们与分布式网络的关系,并确定三个网络(美国食品药品监督管理局的哨兵系统、加拿大药物效应观察研究网络[CNODES]以及全国以患者为中心的临床研究网络[PCORnet])如何处理外部效度问题。
我们定义了外部效度、目标人群、目标效度、可推广性和可转移性,并描述了它们各自与分布式网络的关系。然后我们介绍了哨兵系统、CNODES和PCORnet,以及它们各自如何处理这些概念,包括一个样本案例研究。
每个网络处理外部效度的方式各不相同。由于哨兵系统的目标人群是美国公民且仅包含美国数据,它主要担心因未纳入某些人群部分而缺乏外部效度。CNODES包含加拿大、美国和英国的数据,这使得它们在对特定数据库估计值进行荟萃分析时,必须认真考虑美国和英国的数据是否可转移到加拿大公民身上。PCORnet专注于特定研究队列和实用试验,针对其生成的每个新分析数据集,对外部效度进行更多逐案探索。
在分布式网络中,不存在适用于所有情况的外部效度处理方法。随着这些网络及其研究结果之间的比较成为药物流行病学的关键部分,需要调整用于提高外部效度的工具,以适应分布式网络环境。