Suppr超能文献

在分布式网络和多地点药物流行病学研究中向特定目标人群标准化。

Standardizing to specific target populations in distributed networks and multisite pharmacoepidemiologic studies.

出版信息

Am J Epidemiol. 2024 Jul 8;193(7):1031-1039. doi: 10.1093/aje/kwae015.

Abstract

Distributed network studies and multisite studies assess drug safety and effectiveness in diverse populations by pooling information. Targeting groups of clinical or policy interest (including specific sites or site combinations) and applying weights based on effect measure modifiers (EMMs) prior to pooling estimates within multisite studies may increase interpretability and improve precision. We simulated a 4-site study, standardized each site using inverse odds weights (IOWs) to resemble the 3 smallest sites or the smallest site, estimated IOW-weighted risk differences (RDs), and combined estimates with inverse variance weights (IVWs). We also created an artificial distributed network in the Clinical Practice Research Datalink (CPRD) Aurum consisting of 1 site for each geographic region. We compared metformin and sulfonylurea initiators with respect to mortality, targeting the smallest region. In the simulation, IOWs reduced differences between estimates and increased precision when targeting the 3 smallest sites or the smallest site. In the CPRD Aurum study, the IOW + IVW estimate was also more precise (smallest region: RD = 5.41% [95% CI, 1.03-9.79]; IOW + IVW estimate: RD = 3.25% [95% CI, 3.07-3.43]). When performing pharmacoepidemiologic research in distributed networks or multisite studies in the presence of EMMs, designation of target populations has the potential to improve estimate precision and interpretability. This article is part of a Special Collection on Pharmacoepidemiology.

摘要

分布式网络研究和多地点研究通过汇总信息来评估不同人群中的药物安全性和有效性。在多地点研究中,针对具有临床或政策意义的目标群体(包括特定地点或地点组合),并在汇总估计值之前基于效应量修正因子(EMM)应用权重,可能会提高可解释性并提高精度。我们模拟了一个 4 个地点的研究,使用逆概率权重(IOW)对每个地点进行标准化,以类似于 3 个最小的地点或最小的地点,估计 IOW 加权风险差异(RD),并使用倒数方差权重(IVW)合并估计值。我们还在临床实践研究数据链接(CPRD)Aurum 中创建了一个人工分布式网络,每个地理区域都有一个地点。我们针对死亡率比较了二甲双胍和磺酰脲类药物的启动者,目标是最小的地区。在模拟中,当针对 3 个最小的地点或最小的地点时,IOW 减少了估计值之间的差异并提高了精度。在 CPRD Aurum 研究中,IOW+IVW 估计值也更加精确(最小地区:RD = 5.41%[95%CI,1.03-9.79];IOW+IVW 估计值:RD = 3.25%[95%CI,3.07-3.43])。当在存在 EMM 的分布式网络或多地点研究中进行药物流行病学研究时,目标人群的指定有可能提高估计值的精度和可解释性。本文是药物流行病学特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6438/11520739/8564ee15d593/kwae015f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验