Suppr超能文献

计算表型在 PCORnet 中识别糖尿病患者的性能:以患者为中心的临床研究网络。

Performance of a computable phenotype for identification of patients with diabetes within PCORnet: The Patient-Centered Clinical Research Network.

机构信息

Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2019 May;28(5):632-639. doi: 10.1002/pds.4718. Epub 2019 Jan 24.

Abstract

PURPOSE

PCORnet, the National Patient-Centered Clinical Research Network, represents an innovative system for the conduct of observational and pragmatic studies. We describe the identification and validation of a retrospective cohort of patients with type 2 diabetes (T2DM) from four PCORnet sites.

METHODS

We adapted existing computable phenotypes (CP) for the identification of patients with T2DM and evaluated their performance across four PCORnet sites (2012-2016). Patients entered the cohort on the earliest date they met one of three CP categories: (CP1) coded T2DM diagnosis (ICD-9/ICD-10) and an antidiabetic prescription, (CP2) diagnosis and glycosylated hemoglobin (HbA1c) ≥6.5%, or (CP3) an antidiabetic prescription and HbA1c ≥6.5%. We required evidence of health care utilization in each of the 2 prior years for each patient, as we also developed an incident T2DM CP to identify the subset of patients without documentation of T2DM in the 365 days before t . Among a systematic sample of patients, we calculated the positive predictive value (PPV) for the T2DM CP and incident-T2DM CP using electronic health record (EHR) review as reference.

RESULTS

The CP identified 50 657 patients with T2DM. The PPV of patients randomly selected for validation was 96.2% (n = 1572; CI:95.1-97.0) and was consistently high across sites. The PPV for the incident-T2DM CP was 5.8% (CI:4.5-7.5).

CONCLUSIONS

The T2DM CP accurately and efficiently identified patients with T2DM across multiple sites that participate in PCORnet, although the incident T2DM CP requires further study. PCORnet is a valuable data source for future epidemiological and comparative effectiveness research among patients with T2DM.

摘要

目的

PCORnet 是国家以患者为中心的临床研究网络,代表了一种用于进行观察性和实用研究的创新系统。我们描述了从四个 PCORnet 站点中确定和验证 2 型糖尿病 (T2DM) 患者的回顾性队列。

方法

我们针对 T2DM 患者的识别改编了现有的可计算表型 (CP),并在四个 PCORnet 站点 (2012-2016 年) 对其性能进行了评估。患者最早在满足以下三个 CP 类别之一时进入队列:(CP1) 编码 T2DM 诊断 (ICD-9/ICD-10) 和抗糖尿病处方,(CP2) 诊断和糖化血红蛋白 (HbA1c) ≥6.5%,或 (CP3) 抗糖尿病处方和 HbA1c ≥6.5%。我们要求每位患者在前两年中有证据表明医疗保健的使用,因为我们还开发了一个 T2DM 的发病 CP,以识别在 t 之前的 365 天内没有 T2DM 记录的患者子集。在系统选择的患者中,我们使用电子健康记录 (EHR) 审查作为参考,计算 T2DM CP 和发病 T2DM CP 的阳性预测值 (PPV)。

结果

CP 确定了 50657 名 T2DM 患者。随机选择进行验证的患者的 PPV 为 96.2% (n = 1572; CI:95.1-97.0),并且在各个站点均保持较高水平。发病 T2DM CP 的 PPV 为 5.8% (CI:4.5-7.5)。

结论

T2DM CP 可准确有效地在参与 PCORnet 的多个站点中识别 T2DM 患者,尽管发病 T2DM CP 需要进一步研究。PCORnet 是 T2DM 患者未来进行流行病学和比较效果研究的有价值的数据来源。

相似文献

引用本文的文献

本文引用的文献

4
PCORnet's Collaborative Research Groups.PCORnet合作研究小组。
Patient Relat Outcome Meas. 2018 Feb 9;9:91-95. doi: 10.2147/PROM.S141630. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验