Suppr超能文献

基于土地利用变化和碳封存实践的大型经济带生态系统未来碳储量。

Future carbon storages of ecosystem based on land use change and carbon sequestration practices in a large economic belt.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Environ Sci Pollut Res Int. 2023 Aug;30(39):90924-90935. doi: 10.1007/s11356-023-28555-0. Epub 2023 Jul 19.

Abstract

Assessments of ecosystem carbon storage are needed to form the scientific basis for carbon policies. Due to lack of data, there are few accurate, large-scale, and long-term predictions of ecosystem carbon storage. This study used the Distributed Land-Use Change Prediction (DLUCP) model with ten socioeconomic and two climate change scenarios for a total of 20 combinations that take into account population increase, technology innovation, climate change, and Grain for Green Project to make high-resolution predictions of land use change in the Yangtze River Economic Belt. Low and high carbon sequestration practices were considered to predict future carbon densities. Land use change data, carbon densities data, and the InVEST model were used to predict changes in ecosystem carbon storage from now to 2070. The results show a slight increase (1.88-4.17%) in carbon storage in the study area only based on land use change. Grain for Green Project has the largest impact on carbon storage among population increase, technology innovation, climate scenarios, and Grain for Green Project, which increases carbon storage by 4.17%. After the implementation of carbon sequestration practices, there is an increase in carbon storages from 28.51 to 56.77% in the study area from now to 2070, and increasing carbon storages of forest in each stream and carbon storage of cropland in downstream are efficient ways to achieve carbon neutralization.

摘要

评估生态系统碳储存对于制定碳政策的科学依据是必要的。由于数据缺乏,对生态系统碳储存进行准确、大规模和长期预测的情况很少。本研究使用了分布式土地利用变化预测模型(DLUCP),结合了十种社会经济和两种气候变化情景,共 20 种组合,考虑了人口增长、技术创新、气候变化和退耕还林还草工程,对长江经济带的土地利用变化进行了高分辨率预测。考虑了低碳和高碳固存实践来预测未来的碳密度。利用土地利用变化数据、碳密度数据和 InVEST 模型,预测了从现在到 2070 年生态系统碳储存的变化。结果表明,仅基于土地利用变化,研究区域的碳储存就会略有增加(1.88-4.17%)。退耕还林还草工程对碳储存的影响最大,其次是人口增长、技术创新、气候情景和退耕还林还草工程,增加了 4.17%的碳储存。实施碳固存实践后,从现在到 2070 年,研究区域的碳储存将增加 28.51%至 56.77%,增加每条溪流的森林碳储存和下游耕地的碳储存是实现碳中和的有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验