Suppr超能文献

使用非标准化表面肌电图和特征输入来开发基于长短期记忆网络的动力踝关节假肢控制算法。

The use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm development.

作者信息

Keleş Ahmet Doğukan, Türksoy Ramazan Tarık, Yucesoy Can A

机构信息

Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye.

Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.

出版信息

Front Neurosci. 2023 Jul 3;17:1158280. doi: 10.3389/fnins.2023.1158280. eCollection 2023.

Abstract

Advancements in instrumentation support improved powered ankle prostheses hardware development. However, control algorithms have limitations regarding number and type of sensors utilized and achieving autonomous adaptation, which is key to a natural ambulation. Surface electromyogram (sEMG) sensors are promising. With a minimized number of sEMG inputs an control algorithm can be developed, whereas limiting the use of lower leg muscles will provide a algorithm for both ankle disarticulation and transtibial amputation. To determine appropriate sensor combinations, a systematic assessment of the predictive success of variations of multiple sEMG inputs in estimating ankle position and moment has to conducted. More importantly, tackling the use of nonnormalized sEMG data in such algorithm development to overcome processing complexities in real-time is essential, but lacking. We used healthy population level walking data to (1) develop sagittal ankle position and moment predicting algorithms using nonnormalized sEMG, and (2) rank all muscle combinations based on success to determine economic and practical algorithms. Eight lower extremity muscles were studied as sEMG inputs to a long-short-term memory (LSTM) neural network architecture: tibialis anterior (TA), soleus (SO), medial gastrocnemius (MG), peroneus longus (PL), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF) and gluteus maximus (GMax). Five features extracted from nonnormalized sEMG amplitudes were used: integrated EMG (IEMG), mean absolute value (MAV), Willison amplitude (WAMP), root mean square (RMS) and waveform length (WL). Muscle and feature combination variations were ranked using Pearson's correlation coefficient (r > 0.90 indicates successful correlations), the root-mean-square error and one-dimensional statistical parametric mapping between the original data and LSTM response. The results showed that IEMG+WL yields the best feature combination performance. The best performing variation was MG + RF + VM ( = 0.9099 and  = 0.9707) whereas, PL ( = 0.9001,  = 0.9703) and GMax+VM ( = 0.9010,  = 0.9718) were distinguished as the economic and practical variations, respectively. The study established for the first time the use of nonnormalized sEMG in control algorithm development for level walking.

摘要

仪器设备的进步推动了动力踝关节假肢硬件的改进。然而,控制算法在传感器的数量和类型以及实现自主适应方面存在局限性,而自主适应是自然行走的关键。表面肌电图(sEMG)传感器很有前景。通过将sEMG输入数量降至最低,可以开发一种控制算法,而限制小腿肌肉的使用将为踝关节离断和经胫骨截肢提供一种算法。为了确定合适的传感器组合,必须对多个sEMG输入变化在估计踝关节位置和力矩方面的预测成功率进行系统评估。更重要的是,在这种算法开发中解决非标准化sEMG数据的使用问题以克服实时处理复杂性至关重要,但目前尚缺乏相关研究。我们使用健康人群的行走数据来:(1)使用非标准化sEMG开发矢状面踝关节位置和力矩预测算法;(2)根据成功率对所有肌肉组合进行排序,以确定经济实用的算法。研究了八块下肢肌肉作为长短期记忆(LSTM)神经网络架构的sEMG输入:胫骨前肌(TA)、比目鱼肌(SO)、内侧腓肠肌(MG)、腓骨长肌(PL)、股直肌(RF)、股内侧肌(VM)、股二头肌(BF)和臀大肌(GMax)。使用从非标准化sEMG幅度中提取的五个特征:肌电积分(IEMG)、平均绝对值(MAV)、威利森幅度(WAMP)、均方根(RMS)和波形长度(WL)。使用皮尔逊相关系数(r>0.90表示成功相关)、均方根误差以及原始数据与LSTM响应之间的一维统计参数映射对肌肉和特征组合变化进行排序。结果表明,IEMG+WL产生最佳的特征组合性能。表现最佳的组合是MG+RF+VM(r=0.9099,RMSE=0.9707),而PL(r=0.9001,RMSE=0.9703)和GMax+VM(r=0.9010,RMSE=0.9718)分别被视为经济实用的组合。该研究首次确立了在平地行走控制算法开发中使用非标准化sEMG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79b/10351874/164601494515/fnins-17-1158280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验