Akaike Kouki, Shimoi Yukihiro, Miura Toshiaki, Morita Hiroshi, Akiyama Haruhisa, Horiuchi Shin
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
Langmuir. 2023 Aug 1;39(30):10625-10637. doi: 10.1021/acs.langmuir.3c01218. Epub 2023 Jul 19.
Joining metals by adhesive bonding is essential in widespread fields such as mobility, dentistry, and electronics. Although adhesive technology has grown since the 1920s, the roles of interfacial phenomena in adhesive bonding are still elusive, which hampers the on-demand selection of surface treatment and adhesive types. In the present study, we clarified how chemical interactions and mechanical interlocking governed adhesive bonding by evaluating adhesion properties at the interfaces between epoxy/amine adhesive and two kinds of Al adherends: a flat aluminum hydroxide (AlOH) and technical Al plate with roughness. Spectroscopic and microscopical data demonstrate that the protonation of the amino groups in an amine hardener converts Al(OH) on the AlOH surface to AlO(OH). The interfacial protonation results in an interfacial dipole layer with positive charges on the adhesive side, whose electrostatic interaction increases the interfacial fracture energy. The double cantilever beam tests for the flat AlOH and technical Al substrates clarify that the mechanical interlocking originating from the surface roughness further increases the fracture energy. This study disentangles the roles of the chemical interactions and mechanical interlocking occurring at the epoxy adhesive/Al interface in the adhesion mechanism.
通过胶粘剂粘结来连接金属在移动性、牙科和电子等广泛领域中至关重要。尽管自20世纪20年代以来胶粘剂技术不断发展,但界面现象在胶粘剂粘结中的作用仍不明确,这阻碍了按需选择表面处理方式和胶粘剂类型。在本研究中,我们通过评估环氧/胺类胶粘剂与两种铝被粘物(平整的氢氧化铝(AlOH)和具有粗糙度的工业铝板)之间界面的粘附性能,阐明了化学相互作用和机械联锁如何控制胶粘剂粘结。光谱和显微镜数据表明,胺类固化剂中氨基的质子化将AlOH表面的Al(OH)转化为AlO(OH)。界面质子化导致在胶粘剂一侧带有正电荷的界面偶极层,其静电相互作用增加了界面断裂能。对平整的AlOH和工业铝基板进行的双悬臂梁测试表明,源自表面粗糙度的机械联锁进一步增加了断裂能。本研究厘清了环氧胶粘剂/铝界面处发生的化学相互作用和机械联锁在粘附机理中的作用。