Roth Nikolaj, Goodwin Andrew L
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
Nat Commun. 2023 Jul 19;14(1):4328. doi: 10.1038/s41467-023-40063-w.
Disorder in crystals is rarely random, and instead involves local correlations whose presence and nature are hidden from conventional crystallographic probes. This hidden order can sometimes be controlled, but its importance for physical properties of materials is not well understood. Using simple models for electronic and interatomic interactions, we show how crystals with identical average structures but different types of hidden order can have very different electronic and phononic band structures. Increasing the strength of local correlations within hidden-order states can open band gaps and tune mode (de)localisation-both mechanisms allowing for fundamental changes in physical properties without long-range symmetry breaking. Taken together, our results demonstrate how control over hidden order offers a new mechanism for tuning material properties, orthogonal to the conventional principles of (ordered) structure/property relationships.
晶体中的无序很少是随机的,相反,它涉及局部相关性,而其存在和性质是传统晶体学探测手段所无法察觉的。这种隐藏的有序有时可以被控制,但其对材料物理性质的重要性尚未得到充分理解。通过使用电子和原子间相互作用的简单模型,我们展示了具有相同平均结构但不同类型隐藏有序的晶体如何能够拥有截然不同的电子和声子能带结构。增强隐藏有序态内的局部相关性强度可以打开带隙并调节模式(去)局域化——这两种机制都允许在不破坏长程对称性的情况下使物理性质发生根本性变化。综合来看,我们的结果表明,对隐藏有序的控制提供了一种调节材料性质的新机制,这与(有序的)结构/性质关系的传统原理相互独立。