Wu Han, Chen Lei, Malinowski Paul, Jang Bo Gyu, Deng Qinwen, Scott Kirsty, Huang Jianwei, Ruff Jacob P C, He Yu, Chen Xiang, Hu Chaowei, Yue Ziqin, Oh Ji Seop, Teng Xiaokun, Guo Yucheng, Klemm Mason, Shi Chuqiao, Shi Yue, Setty Chandan, Werner Tyler, Hashimoto Makoto, Lu Donghui, Yilmaz Turgut, Vescovo Elio, Mo Sung-Kwan, Fedorov Alexei, Denlinger Jonathan D, Xie Yaofeng, Gao Bin, Kono Junichiro, Dai Pengcheng, Han Yimo, Xu Xiaodong, Birgeneau Robert J, Zhu Jian-Xin, da Silva Neto Eduardo H, Wu Liang, Chu Jiun-Haw, Si Qimiao, Yi Ming
Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA.
Department of Physics, University of Washington, Seattle, WA, USA.
Nat Commun. 2024 Mar 28;15(1):2739. doi: 10.1038/s41467-024-46862-z.
Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet FeGeTe. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
非易失性相变存储器件利用局部加热在具有不同电学特性的晶态和非晶态之间切换。将这种切换扩展到两个拓扑不同的相需要在具有不同对称性的两个晶相之间进行可控的非易失性切换。在此,我们报告了在近室温范德华铁磁体FeGeTe中观察到的两个具有显著不同电子结构的稳定且密切相关的晶体结构之间的可逆和非易失性切换。我们表明,这种切换是由Fe位点空位的有序化和无序化实现的,这导致了两个相具有不同的晶体对称性,可通过热退火和淬火方法进行控制。这两个相的区别在于,在位点无序相中由于保留了全局反演对称性而存在拓扑节线,在二分晶格上由于量子相消干涉产生了平带,而在位点有序相中反演对称性被破坏。