J Phys Chem Lett. 2024 Aug 1;15(30):7724-7734. doi: 10.1021/acs.jpclett.4c01153. Epub 2024 Jul 23.
Biomolecular condensates formed via phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) and nucleic acids are associated with cell physiology and disease. Water makes up for ∼60-70% of the condensate volume and is thought to influence the complex interplay of chain-chain and chain-solvent interactions, modulating the mesoscale properties of condensates. The behavior of water in condensates and the key roles of protein hydration water in driving the phase separation remain elusive. Here, we employ single-droplet vibrational Raman spectroscopy to illuminate the structural redistribution within protein hydration water during the phase separation of neuronal IDPs. Our Raman measurements reveal the changes in the water hydrogen bonding network during homotypic and heterotypic phase separation governed by various molecular drivers. Such single-droplet water Raman measurements offer a potent generic tool to unmask the intriguing interplay of sequence-encoded chain-chain and chain-solvent interactions governing macromolecular phase separation into membraneless organelles, synthetic condensates, and protocells.
生物分子凝聚物通过无序蛋白质/区域(IDPs/IDRs)和核酸的相分离形成,与细胞生理学和疾病有关。水占凝聚物体积的约 60-70%,被认为会影响链-链和链-溶剂相互作用的复杂相互作用,调节凝聚物的介观性质。凝聚物中水分子的行为以及蛋白质水合作用在推动相分离中的关键作用仍然难以捉摸。在这里,我们采用单液滴振动拉曼光谱法来阐明神经元 IDPs 相分离过程中蛋白质水合作用内的结构再分配。我们的拉曼测量揭示了各种分子驱动因素控制的同型和异型相分离过程中,水氢键网络的变化。这种单液滴水拉曼测量为揭示序列编码的链-链和链-溶剂相互作用的有趣相互作用提供了一种强大的通用工具,这些相互作用控制着将无膜细胞器、合成凝聚物和原细胞进行大分子相分离。