Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany.
J Phys Chem Lett. 2024 Nov 14;15(45):11244-11251. doi: 10.1021/acs.jpclett.4c02142. Epub 2024 Nov 1.
The high concentration of proteins and other biological macromolecules inside biomolecular condensates leads to dense and confined environments, which can affect the dynamic ensembles and the time scales of the conformational transitions. Here, we use atomistic molecular dynamics (MD) simulations of the intrinsically disordered low complexity domain (LCD) of the human fused in sarcoma (FUS) RNA-binding protein to study how self-crowding inside a condensate affects the dynamic motions of the protein. We found a heterogeneous retardation of the protein dynamics in the condensate with respect to the dilute phase, with large-amplitude motions being strongly slowed by up to 2 orders of magnitude, whereas small-scale motions, such as local backbone fluctuations and side-chain rotations, are less affected. The results support the notion of a liquid-like character of the condensates and show that different protein motions respond differently to the environment.
生物分子凝聚体内的高浓度蛋白质和其他生物大分子导致了密集和受限的环境,这可能会影响构象转变的动态集合体和时间尺度。在这里,我们使用原子分子动力学 (MD) 模拟人融合肉瘤 (FUS) RNA 结合蛋白的固有无序低复杂度域 (LCD),研究凝聚体内的自拥挤如何影响蛋白质的动态运动。我们发现凝聚体内的蛋白质动力学存在异质延迟,与稀相相比,大振幅运动被强烈减缓了多达 2 个数量级,而小尺度运动,如局部骨架波动和侧链旋转,则受影响较小。这些结果支持凝聚体具有类似液体的特性的观点,并表明不同的蛋白质运动对环境的响应不同。