Zhang Zhengxing, El-Henawy Sally I, Ríos Ocampo Carlos A, Boning Duane S
Opt Express. 2023 Jul 3;31(14):23651-23661. doi: 10.1364/OE.489164.
Understanding process variations and their impact in silicon photonics remains challenging. To achieve high-yield manufacturing, a key step is to extract the magnitude and spatial distribution of process variations in the actual fabrication, which is usually based on measurements of replicated test structures. In this paper, we develop a Bayesian-based method to infer the distribution of systematic geometric variations in silicon photonics, without requiring replication of identical test structures. We apply this method to characterization data from multiple silicon nitride ring resonators with different design parameters. We extract distributions with standard deviation of 28 nm, 0.8 nm, and 3.8 nm for the width, thickness, and partial etch depth, respectively, as well as the spatial maps of these variations. Our results show that this characterization and extraction approach can serve as an efficient method to study process variation in silicon photonics, facilitating the design of high-yield silicon photonic circuits in the future.
了解工艺变化及其在硅光子学中的影响仍然具有挑战性。为了实现高良率制造,关键步骤是在实际制造过程中提取工艺变化的幅度和空间分布,这通常基于对复制测试结构的测量。在本文中,我们开发了一种基于贝叶斯的方法来推断硅光子学中系统几何变化的分布,而无需复制相同的测试结构。我们将此方法应用于来自具有不同设计参数的多个氮化硅环形谐振器的表征数据。我们分别提取了宽度、厚度和部分蚀刻深度的标准偏差为28 nm、0.8 nm和3.8 nm的分布,以及这些变化的空间图。我们的结果表明,这种表征和提取方法可以作为研究硅光子学中工艺变化的有效方法,有助于未来高良率硅光子电路的设计。