Suppr超能文献

基于卷积神经网络的指数法在按恶性程度对CT图像上的肺结节进行分类中的效能。

Efficacy of exponentiation method with a convolutional neural network for classifying lung nodules on CT images by malignancy level.

作者信息

Usuzaki Takuma, Takahashi Kengo, Takagi Hidenobu, Ishikuro Mami, Obara Taku, Yamaura Takumi, Kamimoto Masahiro, Majima Kazuhiro

机构信息

Department of Diagnostic Radiology, Tohoku University Hospital, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.

Tohoku University Graduate School of Medicine, Sendai, Japan.

出版信息

Eur Radiol. 2023 Dec;33(12):9309-9319. doi: 10.1007/s00330-023-09946-w. Epub 2023 Jul 21.

Abstract

OBJECTIVES

The aim of this study was to examine the performance of a convolutional neural network (CNN) combined with exponentiating each pixel value in classifying benign and malignant lung nodules on computed tomography (CT) images.

MATERIALS AND METHODS

Images in the Lung Image Database Consortium-Image Database Resource Initiative (LIDC-IDRI) were analyzed. Four CNN models were then constructed to classify the lung nodules by malignancy level (malignancy level 1 vs. 2, malignancy level 1 vs. 3, malignancy level 1 vs. 4, and malignancy level 1 vs. 5). The exponentiation method was applied for exponent values of 1.0 to 10.0 in increments of 0.5. Accuracy, sensitivity, specificity, and area under the curve of receiver operating characteristics (AUC-ROC) were calculated. These statistics were compared between an exponent value of 1.0 and all other exponent values in each model by the Mann-Whitney U-test.

RESULTS

In malignancy 1 vs. 4, maximum test accuracy (MTA; exponent value = 2.0, 3.0, 3.5, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, and 10.0) and specificity (6.5, 7.0, and 9.0) were improved by up to 0.012 and 0.037, respectively. In malignancy 1 vs. 5, MTA (6.5 and 7.0) and sensitivity (1.5) were improved by up to 0.030 and 0.0040, respectively.

CONCLUSIONS

The exponentiation method improved the performance of the CNN in the task of classifying lung nodules on CT images as benign or malignant. The exponentiation method demonstrated two advantages: improved accuracy, and the ability to adjust sensitivity and specificity by selecting an appropriate exponent value.

CLINICAL RELEVANCE STATEMENT

Adjustment of sensitivity and specificity by selecting an exponent value enables the construction of proper CNN models for screening, diagnosis, and treatment processes among patients with lung nodules.

KEY POINTS

• The exponentiation method improved the performance of the convolutional neural network. • Contrast accentuation by the exponentiation method may derive features of lung nodules. • Sensitivity and specificity can be adjusted by selecting an exponent value.

摘要

目的

本研究旨在检验卷积神经网络(CNN)结合对每个像素值进行指数运算在计算机断层扫描(CT)图像上对肺结节进行良恶性分类的性能。

材料与方法

分析了肺影像数据库联盟-影像数据库资源计划(LIDC-IDRI)中的图像。然后构建了四个CNN模型,按恶性程度(恶性程度1与2、恶性程度1与3、恶性程度1与4、恶性程度1与5)对肺结节进行分类。指数运算方法应用于1.0至10.0的指数值,增量为0.5。计算了准确率、敏感性、特异性和受试者操作特征曲线下面积(AUC-ROC)。通过曼-惠特尼U检验比较了每个模型中指数值1.0与所有其他指数值之间的这些统计数据。

结果

在恶性程度1与4的比较中,最大测试准确率(MTA;指数值=2.0、3.0、3.5、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5和10.0)和特异性(6.5、7.0和9.0)分别提高了0.012和0.037。在恶性程度1与5的比较中,MTA(6.5和7.0)和敏感性(1.5)分别提高了0.030和0.0040。

结论

指数运算方法提高了CNN在CT图像上对肺结节进行良恶性分类任务中的性能。指数运算方法显示出两个优点:提高了准确率,以及能够通过选择合适的指数值来调整敏感性和特异性。

临床相关性声明

通过选择指数值来调整敏感性和特异性,能够为肺结节患者的筛查、诊断和治疗过程构建合适的CNN模型。

关键点

• 指数运算方法提高了卷积神经网络的性能。• 指数运算方法的对比度增强可能会提取肺结节的特征。• 可以通过选择指数值来调整敏感性和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验