Suppr超能文献

深度学习算法在非源自LIDC-IDRI的不同数据集上进行自动肺结节检测和分类的性能:一项系统评价。

The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review.

作者信息

Li Dana, Mikela Vilmun Bolette, Frederik Carlsen Jonathan, Albrecht-Beste Elisabeth, Ammitzbøl Lauridsen Carsten, Bachmann Nielsen Michael, Lindskov Hansen Kristoffer

机构信息

Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Diagnostics (Basel). 2019 Nov 29;9(4):207. doi: 10.3390/diagnostics9040207.

Abstract

The aim of this study was to systematically review the performance of deep learning technology in detecting and classifying pulmonary nodules on computed tomography (CT) scans that were not from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database. Furthermore, we explored the difference in performance when the deep learning technology was applied to test datasets different from the training datasets. Only peer-reviewed, original research articles utilizing deep learning technology were included in this study, and only results from testing on datasets other than the LIDC-IDRI were included. We searched a total of six databases: EMBASE, PubMed, Cochrane Library, the Institute of Electrical and Electronics Engineers, Inc. (IEEE), Scopus, and Web of Science. This resulted in 1782 studies after duplicates were removed, and a total of 26 studies were included in this systematic review. Three studies explored the performance of pulmonary nodule detection only, 16 studies explored the performance of pulmonary nodule classification only, and 7 studies had reports of both pulmonary nodule detection and classification. Three different deep learning architectures were mentioned amongst the included studies: convolutional neural network (CNN), massive training artificial neural network (MTANN), and deep stacked denoising autoencoder extreme learning machine (SDAE-ELM). The studies reached a classification accuracy between 68-99.6% and a detection accuracy between 80.6-94%. Performance of deep learning technology in studies using different test and training datasets was comparable to studies using same type of test and training datasets. In conclusion, deep learning was able to achieve high levels of accuracy, sensitivity, and/or specificity in detecting and/or classifying nodules when applied to pulmonary CT scans not from the LIDC-IDRI database.

摘要

本研究的目的是系统评价深度学习技术在检测和分类非来自肺部影像数据库联盟(LIDC)和影像数据库资源计划(IDRI)数据库的计算机断层扫描(CT)上的肺结节的性能。此外,我们还探讨了将深度学习技术应用于与训练数据集不同的测试数据集时性能上的差异。本研究仅纳入了利用深度学习技术且经过同行评审的原创研究文章,并且仅纳入了在LIDC-IDRI以外的数据集上进行测试的结果。我们总共检索了六个数据库:EMBASE、PubMed、Cochrane图书馆、电气和电子工程师协会(IEEE)、Scopus和科学网。去除重复项后得到1782项研究,本系统评价共纳入26项研究。三项研究仅探讨了肺结节检测的性能,16项研究仅探讨了肺结节分类的性能,7项研究同时报告了肺结节检测和分类的情况。纳入的研究中提到了三种不同的深度学习架构:卷积神经网络(CNN)、大规模训练人工神经网络(MTANN)和深度堆叠去噪自动编码器极限学习机(SDAE-ELM)。这些研究的分类准确率在68%-99.6%之间,检测准确率在80.6%-94%之间。在使用不同测试和训练数据集的研究中,深度学习技术的性能与使用相同类型测试和训练数据集的研究相当。总之,当将深度学习应用于非LIDC-IDRI数据库的肺部CT扫描时,在检测和/或分类结节方面能够实现较高水平的准确性、敏感性和/或特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5719/6963966/a4c7aa7cf587/diagnostics-09-00207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验