Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
Southern University of Science and Technology, Shenzhen, 518055, China.
Cell Mol Life Sci. 2023 Jul 22;80(8):223. doi: 10.1007/s00018-023-04866-w.
Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.
Kindlin-2 对于包括骨骼、肝脏、胰岛等关键器官的发育和稳态至关重要,但它在调节血管生成中的作用尚不清楚。在这里,我们报告说,NOTCH 介导的生理血管生成对充分的 KINDLIN-2 极为重要。血管内皮生长因子 A 或肿瘤坏死因子 α 等血管生成因子可显著调节 HUVECs 中 KINDLIN-2 的表达。免疫荧光染色显示组织切片中 CD31 和 Kindlin-2 存在强烈的共定位。内皮细胞特异性的 Kindlin-2 缺失胚胎在 E10.5 因生理血管生成受损而导致的出血而死亡。体外实验表明,血管内皮生长因子 A 诱导的内皮细胞的多种功能,包括迁移、基质蛋白水解、形态发生和发芽,都通过 KINDLIN-2 的过表达而增强,而在没有 KINDLIN-2 的情况下则严重受损。在机制上,我们证明 KINDLIN-2 通过与 NOTCH1 结合并维持其完整性来抑制 Notch 细胞内结构域的释放。KINDLIN-2 缺失导致的血管生成受损和无血管视网膜可以通过 DAPT(一种从 NOTCH1 释放细胞内结构域的 γ-分泌酶抑制剂)来挽救。此外,我们证明高葡萄糖通过增加 KINDLIN-2 表达刺激过度活跃的血管生成,而 KINDLIN-2 的敲低可以防止这种情况,表明 Kindlin-2 可能是治疗糖尿病性视网膜病变的潜在治疗靶点。我们的研究首次证明了 Kindlin-2 在决定发育过程中 Notch 介导的血管生成中的重要性,并强调了 Kindlin-2 作为血管生成性疾病(如糖尿病性视网膜病变)的潜在治疗靶点的重要性。