Suppr超能文献

通过全自动深度学习量化流程准确测量磁共振帕金森病指数

Accurate measurement of magnetic resonance parkinsonism index by a fully automatic and deep learning quantification pipeline.

作者信息

Sun Fuhai, Lyu Junyan, Jian Si, Qin Yuanyuan, Tang Xiaoying

机构信息

Department of Electronic and Electrical Engineering, College of Engineering, Southern University of Science and Technology, Xili, Nanshan, Shenzhen, 518055, People's Republic of China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, 430030, People's Republic of China.

出版信息

Eur Radiol. 2023 Dec;33(12):8844-8853. doi: 10.1007/s00330-023-09979-1. Epub 2023 Jul 22.

Abstract

OBJECTIVES

This study aims at a fully automatic pipeline for measuring the magnetic resonance parkinsonism index (MRPI) using deep learning methods.

METHODS

MRPI is defined as the product of the pons area to the midbrain area ratio and the middle cerebellar peduncle (MCP) width to the superior cerebellar peduncle (SCP) width ratio. In our proposed pipeline, we first used nnUNet to segment the brainstem and then employed HRNet to identify two key boundary points so as to sub-divide the whole brainstem into midbrain and pons. HRNet was also employed to predict the MCP endpoints for measuring the MCP width. Finally, we segmented the SCP on an oblique coronal plane and calculated its width. A total of 400 T1-weighted magnetic resonance images (MRIs) were used to train the nnUNet and HRNet models. Five-fold cross-validation was conducted to evaluate our proposed pipeline's performance on the training dataset. We also evaluated the performance of our proposed pipeline on three external datasets. Two of them had two raters manually measuring the MRPI values, providing insights into automatic accuracy versus inter-rater variability.

RESULTS

We obtained average absolute percentage errors (APEs) of 17.21%, 18.17%, 20.83%, and 22.83% on the training dataset and the three external validation datasets, while the inter-rater average APE measured on the first two external validation datasets was 11.31%. Our proposed pipeline significantly improved the MRPI quantification accuracy over a representative state-of-the-art traditional approach (p < 0.001).

CONCLUSION

The proposed automatic pipeline can accurately predict MRPI that is comparable with manual measurement.

CLINICAL RELEVANCE STATEMENT

This study presents an automated magnetic resonance parkinsonism index measurement tool that can analyze large amounts of magnetic resonance images, enhance the efficiency of Parkinsonism-Plus syndrome diagnosis, reduce the workload of clinicians, and minimize the impact of human factors on diagnosis.

KEY POINTS

• We propose an automatic pipeline for measuring the magnetic resonance parkinsonism index from magnetic resonance images. • The effectiveness of the proposed pipeline is successfully established on multiple datasets and comparisons with inter-rater measurements. • The proposed pipeline significantly outperforms a state-of-the-art quantification approach, being much closer to ground truth.

摘要

目的

本研究旨在建立一种使用深度学习方法测量磁共振帕金森病指数(MRPI)的全自动流程。

方法

MRPI定义为脑桥面积与中脑面积之比乘以小脑中脚(MCP)宽度与小脑上脚(SCP)宽度之比。在我们提出的流程中,我们首先使用nnUNet分割脑干,然后使用HRNet识别两个关键边界点,以便将整个脑干细分为中脑和脑桥。HRNet还用于预测MCP端点以测量MCP宽度。最后,我们在斜冠状面上分割SCP并计算其宽度。总共400张T1加权磁共振图像(MRI)用于训练nnUNet和HRNet模型。进行五折交叉验证以评估我们提出的流程在训练数据集上的性能。我们还评估了我们提出的流程在三个外部数据集上的性能。其中两个数据集有两名评估者手动测量MRPI值,从而深入了解自动测量的准确性与评估者间的变异性。

结果

我们在训练数据集和三个外部验证数据集上分别获得了17.21%、18.17%、20.83%和22.83%的平均绝对百分比误差(APE),而在前两个外部验证数据集上测量的评估者间平均APE为11.31%。与一种具有代表性的最先进传统方法相比,我们提出的流程显著提高了MRPI量化准确性(p < 0.001)。

结论

所提出的自动流程能够准确预测与手动测量相当的MRPI。

临床相关性声明

本研究提出了一种自动磁共振帕金森病指数测量工具,该工具可以分析大量磁共振图像,提高帕金森叠加综合征的诊断效率,减轻临床医生的工作量,并最大限度地减少人为因素对诊断的影响。

关键点

• 我们提出了一种从磁共振图像测量磁共振帕金森病指数的自动流程。• 所提出流程的有效性已在多个数据集上成功确立,并与评估者间测量结果进行了比较。• 所提出的流程显著优于一种最先进的量化方法,更接近真实值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验