Suppr超能文献

使用深度学习的多模态磁共振成像扫描进行脑肿瘤分割与生存预测

Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning.

作者信息

Sun Li, Zhang Songtao, Chen Hang, Luo Lin

机构信息

School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China.

College of Engineering, Peking University, Beijing, China.

出版信息

Front Neurosci. 2019 Aug 16;13:810. doi: 10.3389/fnins.2019.00810. eCollection 2019.

Abstract

Gliomas are the most common primary brain malignancies. Accurate and robust tumor segmentation and prediction of patients' overall survival are important for diagnosis, treatment planning and risk factor identification. Here we present a deep learning-based framework for brain tumor segmentation and survival prediction in glioma, using multimodal MRI scans. For tumor segmentation, we use ensembles of three different 3D CNN architectures for robust performance through a majority rule. This approach can effectively reduce model bias and boost performance. For survival prediction, we extract 4,524 radiomic features from segmented tumor regions, then, a decision tree and cross validation are used to select potent features. Finally, a random forest model is trained to predict the overall survival of patients. The 2018 MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), ranks our method at 2nd and 5th place out of 60+ participating teams for survival prediction tasks and segmentation tasks respectively, achieving a promising 61.0% accuracy on the classification of short-survivors, mid-survivors and long-survivors.

摘要

神经胶质瘤是最常见的原发性脑恶性肿瘤。准确且可靠的肿瘤分割以及对患者总生存期的预测对于诊断、治疗规划和风险因素识别至关重要。在此,我们提出了一种基于深度学习的框架,用于利用多模态磁共振成像(MRI)扫描对神经胶质瘤进行脑肿瘤分割和生存期预测。对于肿瘤分割,我们使用三种不同的3D卷积神经网络(CNN)架构的集成,通过多数规则实现稳健性能。这种方法可以有效减少模型偏差并提高性能。对于生存期预测,我们从分割出的肿瘤区域提取4524个影像组学特征,然后使用决策树和交叉验证来选择有效特征。最后,训练一个随机森林模型来预测患者的总生存期。在2018年医学图像计算与计算机辅助干预国际会议(MICCAI)多模态脑肿瘤分割挑战赛(BraTS)中,我们的方法在60多个参赛团队中,分别在生存期预测任务和分割任务中排名第二和第五,在短生存期、中期生存期和长期生存期的分类上取得了有前景的61.0%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee86/6707136/1fef935e9e0c/fnins-13-00810-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验