Suppr超能文献

一个全面的果蝇资源,用于鉴定 SARS-CoV-2 因子与宿主蛋白之间的关键功能相互作用。

A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins.

机构信息

Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.

出版信息

Cell Rep. 2023 Aug 29;42(8):112842. doi: 10.1016/j.celrep.2023.112842. Epub 2023 Jul 20.

Abstract

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.

摘要

开发针对 SARS-CoV-2 感染的有效疗法依赖于对病毒-宿主界面的机制理解。已经鉴定出大量病毒和宿主蛋白之间的物理相互作用,但只有少数得到了功能表征。利用果蝇遗传学的力量,我们开发了一个全面的 Drosophila COVID-19 资源(DCR),其中包括公开的菌株,用于条件性组织特异性表达所有 SARS-CoV-2 编码的蛋白质、编码已建立的宿主-病毒相互作用因子的 UAS-人 cDNA 转基因系,以及破坏 SARS-CoV-2 人类相互作用蛋白的 fly 同源物的 GAL4 插入系。我们证明了 DCR 可用于对 SARS-CoV-2 基因和候选人类结合伙伴进行功能评估。我们表明 NSP8 与几种人类候选物(特别是与 ATE1 精氨酰转移酶)发生强烈的遗传相互作用,以诱导肌动蛋白精氨酸化和细胞骨架解聚,并且两种 ATE1 抑制剂可以逆转 NSP8 表型。DCR 使 SARS-CoV-2 成分在主要遗传模型系统中能够进行并行的全球规模功能分析。

相似文献

1
A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins.
Cell Rep. 2023 Aug 29;42(8):112842. doi: 10.1016/j.celrep.2023.112842. Epub 2023 Jul 20.
2
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618.
3
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
4
SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production.
mBio. 2024 Nov 13;15(11):e0230824. doi: 10.1128/mbio.02308-24. Epub 2024 Sep 30.
5
SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19.
Cochrane Database Syst Rev. 2022 Jun 17;6(6):CD014945. doi: 10.1002/14651858.CD014945.pub2.
6
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
7
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207. doi: 10.1002/14651858.CD006207.pub6.
8
SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes.
J Proteome Res. 2020 Nov 6;19(11):4275-4290. doi: 10.1021/acs.jproteome.0c00421. Epub 2020 Aug 10.
9
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.
Cochrane Database Syst Rev. 2021 Sep 2;9(9):CD013825. doi: 10.1002/14651858.CD013825.pub2.
10
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

引用本文的文献

1
The C-terminal Domain of SARS-CoV-2 nsp8 is a Molten Globule in the Absence of Binding Partners.
J Mol Biol. 2025 Aug 19;437(21):169400. doi: 10.1016/j.jmb.2025.169400.
2
: How and Why It Became a Model Organism.
Int J Mol Sci. 2025 Aug 2;26(15):7485. doi: 10.3390/ijms26157485.
3
Comprehensive investigation of SARS-CoV-2 intestinal pathogenesis in .
bioRxiv. 2025 Jun 25:2025.06.25.661044. doi: 10.1101/2025.06.25.661044.
4
SARS-CoV-2 RNA-binding protein suppresses extracellular miRNA release.
RNA Biol. 2025 Dec;22(1):1-17. doi: 10.1080/15476286.2025.2527494. Epub 2025 Jul 7.
6
SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration.
Neural Regen Res. 2024 Jun 1;19(6):1385-1392. doi: 10.4103/1673-5374.382989. Epub 2023 Aug 14.

本文引用的文献

2
Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation.
Cell Metab. 2023 May 2;35(5):855-874.e5. doi: 10.1016/j.cmet.2023.03.022. Epub 2023 Apr 20.
3
Protein Arginylation Is Regulated during SARS-CoV-2 Infection.
Viruses. 2023 Jan 19;15(2):290. doi: 10.3390/v15020290.
4
SARS-CoV-2 RNA-dependent RNA polymerase as a target for high-throughput drug screening.
Future Virol. 2022 Jan. doi: 10.2217/fvl-2021-0335. Epub 2023 Feb 3.
6
SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19.
Cell Rep. 2022 Nov 1;41(5):111573. doi: 10.1016/j.celrep.2022.111573. Epub 2022 Oct 12.
7
Low expression of EXOSC2 protects against clinical COVID-19 and impedes SARS-CoV-2 replication.
Life Sci Alliance. 2022 Oct 14;6(1). doi: 10.26508/lsa.202201449. Print 2023 Jan.
8
A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets.
Nat Biotechnol. 2023 Jan;41(1):128-139. doi: 10.1038/s41587-022-01474-0. Epub 2022 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验