Department of Electrical and Computer Engineering, University of British Columbia, Canada.
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
Med Image Anal. 2023 Oct;89:102871. doi: 10.1016/j.media.2023.102871. Epub 2023 Jun 25.
Motor dysfunction in Parkinson's Disease (PD) patients is typically assessed by clinicians employing the Movement Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Such comprehensive clinical assessments are time-consuming, expensive, semi-subjective, and may potentially result in conflicting labels across different raters. To address this problem, we propose an automatic, objective, and weakly-supervised method for labeling PD patients' gait videos. The proposed method accepts videos of patients and classifies their gait scores as normal (Gait score in MDS-UPDRS = 0) or PD (MDS-UPDRS ≥ 1). Unlike previous work, the proposed method does not require a priori MDS-UPDRS ratings for training, utilizing only domain-specific knowledge obtained from neurologists. We propose several labeling functions that classify patients' gait and use a generative model to learn the accuracy of each labeling function in a self-supervised manner. Since results depended upon the estimated values of the patients' 3D poses, and existing pre-trained 3D pose estimators did not yield accurate results, we propose a weakly-supervised 3D human pose estimation method for fine-tuning pre-trained models in a clinical setting. Using leave-one-out evaluations, the proposed method obtains an accuracy of 89% on a dataset of 29 PD subjects - a significant improvement compared to previous work by 7%-10% depending upon the dataset. The method obtained state-of-the-art results on the Human3.6M dataset. Our results suggest that the use of labeling functions may provide a robust means to interpret and classify patient-oriented videos involving motor tasks.
帕金森病(PD)患者的运动功能障碍通常由临床医生使用运动障碍协会的统一帕金森病评定量表(MDS-UPDRS)进行评估。这种全面的临床评估既耗时、昂贵,又具有半主观性,并且在不同的评估者之间可能会产生相互矛盾的标签。为了解决这个问题,我们提出了一种自动、客观和弱监督的方法,用于对 PD 患者的步态视频进行标注。该方法接受患者的视频,并将其步态评分分类为正常(MDS-UPDRS 中的步态评分=0)或 PD(MDS-UPDRS≥1)。与以前的工作不同,该方法不需要预先进行 MDS-UPDRS 评分训练,仅利用从神经科医生那里获得的特定于领域的知识。我们提出了几种对患者步态进行分类的标注函数,并使用生成模型以自我监督的方式学习每个标注函数的准确性。由于结果取决于患者的 3D 姿势的估计值,而现有的预训练 3D 姿势估计器无法产生准确的结果,因此我们提出了一种弱监督的 3D 人体姿势估计方法,用于在临床环境中微调预训练模型。使用留一法评估,该方法在 29 名 PD 患者的数据集上获得了 89%的准确率 -与以前的工作相比,根据数据集的不同,准确率提高了 7%-10%。该方法在 Human3.6M 数据集上取得了最先进的结果。我们的结果表明,使用标注函数可能为解释和分类面向患者的涉及运动任务的视频提供一种稳健的方法。