Suppr超能文献

在戒烟的尼古丁依赖个体中增强决策能力:使用分层漂移扩散建模的计算分析。

Enhanced decision-making in nicotine dependent individuals who abstain: A computational analysis using Hierarchical Drift Diffusion Modeling.

机构信息

National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD21224, United States.

Suffolk University, Boston, MA02116, United States; CBTeam, Lexington, MA02421, United States.

出版信息

Drug Alcohol Depend. 2023 Sep 1;250:110890. doi: 10.1016/j.drugalcdep.2023.110890. Epub 2023 Jul 13.

Abstract

BACKGROUND

Variability in decision-making capacity and reward responsiveness may underlie differences in the ability to abstain from smoking. Computational modeling of choice behavior, as with the Hierarchical Drift Diffusion Model (HDDM), can help dissociate reward responsiveness from underlying components of decision-making. Here we used the HDDM to identify which decision-making or reward-related parameters, extracted from data acquired in a reward processing task, contributed to the ability of people who smoke that are not seeking treatment to abstain from cigarettes during a laboratory task.

METHODS

80 adults who smoke cigarettes completed the Probabilistic Reward Task (PRT) - a signal detection task with a differential reinforcement schedule - following smoking as usual, and the Relapse Analogue Task (RAT) - a task in which participants could earn money for delaying smoking up to 50min - after a period of overnight abstinence. Two cohorts were defined by the RAT; those who waited either 0-min (n=36) or the full 50-min (n=44) before smoking.

RESULTS

PRT signal detection metrics indicated all subjects learned the task contingencies, with no differences in response bias or discriminability between the two groups. However, HDDM analyses indicated faster drift rates in 50-min vs. 0-min waiters.

CONCLUSIONS

Relative to those who did not abstain, computational modeling indicated that people who abstained from smoking for 50min showed faster evidence accumulation during reward-based decision-making. These results highlight the importance of decision-making mechanisms to smoking abstinence, and suggest that focusing on the evidence accumulation process may yield new targets for treatment.

摘要

背景

决策能力和奖励反应的可变性可能是导致人们无法戒烟的差异的基础。选择行为的计算模型,如层次漂移扩散模型(HDDM),可以帮助将奖励反应与决策的基本组成部分区分开来。在这里,我们使用 HDDM 来确定从奖励处理任务中获取的数据中提取的哪些决策或奖励相关参数有助于那些不寻求治疗的吸烟者在实验室任务中戒除香烟。

方法

80 名成年吸烟者在正常吸烟后完成了概率奖励任务(PRT)-一项具有差异强化时间表的信号检测任务,然后在经过一夜的禁欲期后完成了复发模拟任务(RAT)-一项参与者可以通过延迟吸烟最多 50 分钟来赚取金钱的任务。根据 RAT 将两个队列定义为:等待 0 分钟(n=36)或等待 50 分钟(n=44)再吸烟的人。

结果

PRT 信号检测指标表明所有受试者都学习了任务的偶然性,两组之间的反应偏差或可辨别性没有差异。然而,HDDM 分析表明,在 50 分钟等待者中漂移率更快。

结论

与那些没有戒烟的人相比,计算模型表明,那些禁欲 50 分钟的人在基于奖励的决策中证据积累更快。这些结果强调了决策机制对戒烟的重要性,并表明关注证据积累过程可能会产生新的治疗目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40b4/10530296/2af1fd5ebb2e/nihms-1919927-f0001.jpg

相似文献

6
Dissecting the impact of depression on decision-making.剖析抑郁对决策的影响。
Psychol Med. 2020 Jul;50(10):1613-1622. doi: 10.1017/S0033291719001570. Epub 2019 Jul 8.

本文引用的文献

5
Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction.烟碱型乙酰胆碱受体与尼古丁成瘾:简介。
Neuropharmacology. 2020 Oct 15;177:108256. doi: 10.1016/j.neuropharm.2020.108256. Epub 2020 Jul 29.
6
Dissecting the impact of depression on decision-making.剖析抑郁对决策的影响。
Psychol Med. 2020 Jul;50(10):1613-1622. doi: 10.1017/S0033291719001570. Epub 2019 Jul 8.
9
How Much Does Education Improve Intelligence? A Meta-Analysis.教育对智力的提升有多大作用?一项元分析。
Psychol Sci. 2018 Aug;29(8):1358-1369. doi: 10.1177/0956797618774253. Epub 2018 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验