Suppr超能文献

肌张力障碍基因及其生物学途径。

Dystonia genes and their biological pathways.

机构信息

Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.

Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States.

出版信息

Int Rev Neurobiol. 2023;169:61-103. doi: 10.1016/bs.irn.2023.04.009. Epub 2023 May 5.

Abstract

High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.

摘要

高通量测序在揭示导致肌张力障碍的致病遗传改变谱方面发挥了重要作用。尽管单基因病因具有巨大的异质性,但过去几年的研究强调,许多与肌张力障碍表现相关的罕见有害变异会影响在神经生理学中某些保守途径中起作用的基因。这些各种基因突变似乎汇聚到相互连接的细胞网络的破坏,导致产生广泛不同的肌张力障碍疾病表型,包括孤立性和合并性肌张力障碍以及许多临床上复杂的、通常与神经发育障碍相关的疾病,这些疾病在多系统紊乱的情况下可能表现为肌张力障碍特征。在本章中,我们根据与离散数量的统一病理生理机制和分子级联异常的关联,总结了多种肌张力障碍基因关系。我们关注的主题包括多巴胺信号、大脑中的重金属积累和钙化、核膜功能和应激反应、基因转录控制、能量稳态、溶酶体运输、钙和离子通道介导的信号、除多巴胺途径之外的突触传递、细胞内外结构组织以及蛋白质合成和降解。增强对肌张力障碍发病机制中共同发病途径概念的认识将激励临床医生和研究人员找到更有效的治疗方法,使患者特定的核心分子网络和连接的多途径循环中的病理学得到逆转。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验