Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
Proteins. 2023 Dec;91(12):1879-1888. doi: 10.1002/prot.26554. Epub 2023 Jul 21.
We present VoroIF-GNN (Voronoi InterFace Graph Neural Network), a novel method for assessing inter-subunit interfaces in a structural model of a protein-protein complex, relying solely on the input structure without any additional information. Given a multimeric protein structural model, we derive interface contacts from the Voronoi tessellation of atomic balls, construct a graph of those contacts, and predict the accuracy of every contact using an attention-based GNN. The contact-level predictions are then summarized to produce whole interface-level scores. VoroIF-GNN was blindly tested for its ability to estimate the accuracy of protein complexes during CASP15 and showed strong performance in selecting the best multimeric model out of many. The method implementation is freely available at https://kliment-olechnovic.github.io/voronota/expansion_js/.
我们提出了 VoroIF-GNN(Voronoi 界面图神经网络),这是一种仅依靠输入结构而无需任何额外信息来评估蛋白质-蛋白质复合物结构模型中亚基间界面的新方法。对于多聚体蛋白质结构模型,我们从原子球的 Voronoi 剖分中得出界面接触,构建这些接触的图,并使用基于注意力的 GNN 预测每个接触的准确性。然后总结接触级别的预测结果以产生整个界面级别的得分。VoroIF-GNN 在 CASP15 中对其评估蛋白质复合物准确性的能力进行了盲测,在从众多模型中选择最佳多聚体模型方面表现出了强大的性能。该方法的实现可在 https://kliment-olechnovic.github.io/voronota/expansion_js/ 上免费获得。