Shuvo Md Hossain, Karim Mohimenul, Roche Rahmatullah, Bhattacharya Debswapna
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
Bioinform Adv. 2023 Jun 2;3(1):vbad070. doi: 10.1093/bioadv/vbad070. eCollection 2023.
Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations.
Here, we present PIQLE, a deep graph learning method for protein-protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE.
An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE.
Supplementary data are available at online.
准确建模蛋白质-蛋白质相互作用界面对于高质量蛋白质复合物结构预测至关重要。现有的评估预测蛋白质复合物结构模型质量的方法仅利用相互作用原子的物理化学性质或能量贡献,而忽略了进化信息或原子间多聚体几何结构,包括相互作用距离和方向。
在此,我们提出了PIQLE,一种用于蛋白质-蛋白质界面质量评估的深度图学习方法。PIQLE利用多聚体相互作用几何结构和进化信息以及序列和结构衍生特征,使用多头图注意力网络估计界面残基之间单个相互作用的质量,然后概率性地组合估计质量以对整体界面进行评分。实验结果表明,在广泛的评估指标下,PIQLE在多个独立测试数据集上始终优于现有的先进方法,包括DProQA、TRScore、GNN-DOVE和DOVE。我们的消融研究以及与重新用于蛋白质复合物评分的AlphaFold-Multimer自评估模块的比较表明,性能提升与多头图注意力网络在利用多聚体相互作用几何结构和进化信息以及PIQLE中采用的其他序列和结构衍生特征方面的有效性有关。
PIQLE的开源软件实现可在https://github.com/Bhattacharya-Lab/PIQLE上免费获取。
补充数据可在网上获取。