Zhu Zetao, Yasui Takao, Zhao Xixi, Liu Quanli, Morita Shu, Li Yan, Yonezu Akira, Nagashima Kazuki, Takahashi Tsunaki, Osada Minoru, Matsuda Ryotaro, Yanagida Takeshi, Baba Yoshinobu
Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
ACS Appl Mater Interfaces. 2023 Aug 2;15(30):36866-36876. doi: 10.1021/acsami.3c03603. Epub 2023 Jul 24.
A low-temperature AlO deposition process provides a simplified method to form a conductive two-dimensional electron gas (2DEG) at the metal oxide/AlO heterointerface. However, the impact of key factors of the interface defects and cation interdiffusion on the interface is still not well understood. Furthermore, there is still a blank space in terms of applications that go beyond the understanding of the interface's electrical conductivity. In this work, we carried out a systematic experimental study by oxygen plasma pretreatment and thermal annealing post-treatment to study the impact of interface defects and cation interdiffusion at the InO/AlO interface on the electrical conductance, respectively. Combining the trends in electrical conductance with the structural characteristics, we found that building a sharp interface with a high concentration of interface defects provides a reliable approach to producing such a conductive interface. After applying this conductive interface as electrodes for fabricating a field-effect transistor (FET) device, we found that this interface electrode exhibited ultrastability in phosphate-buffered saline (PBS), a commonly used biological saline solution. This study provides new insights into the formation of conductive 2DEGs at metal oxide/AlO interfaces and lays the foundation for further applications as electrodes in bioelectronic devices.
一种低温AlO沉积工艺提供了一种在金属氧化物/AlO异质界面形成导电二维电子气(2DEG)的简化方法。然而,界面缺陷和阳离子互扩散等关键因素对该界面的影响仍未得到充分理解。此外,在超出对界面电导率理解范围的应用方面仍存在空白。在这项工作中,我们分别通过氧等离子体预处理和热退火后处理进行了系统的实验研究,以探究InO/AlO界面处的界面缺陷和阳离子互扩散对电导的影响。将电导趋势与结构特征相结合,我们发现构建具有高浓度界面缺陷的尖锐界面为产生这种导电界面提供了一种可靠的方法。在将这种导电界面用作制造场效应晶体管(FET)器件的电极后,我们发现该界面电极在常用的生物盐溶液——磷酸盐缓冲盐水(PBS)中表现出超稳定性。这项研究为在金属氧化物/AlO界面形成导电2DEG提供了新的见解,并为其作为生物电子器件中的电极进一步应用奠定了基础。