Chamarthi Gajapathiraju, Orozco Tatiana, Shell Popy, Fu Devin, Hale-Gallardo Jennifer, Jia Huanguang, Shukla Ashutosh M
Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, FL, United States.
Advanced Chronic Kidney Disease and Home Dialysis Program, North Florida/South Georgia Veteran Healthcare System, Gainesville, FL, United States.
Interact J Med Res. 2023 Jul 24;12:e43384. doi: 10.2196/43384.
Identifying advanced (stages 4 and 5) chronic kidney disease (CKD) cohorts in clinical databases is complicated and often unreliable. Accurately identifying these patients can allow targeting this population for their specialized clinical and research needs.
This study was conducted as a system-based strategy to identify all prevalent Veterans with advanced CKD for subsequent enrollment in a clinical trial. We aimed to examine the prevalence and accuracy of conventionally used diagnosis codes and estimated glomerular filtration rate (eGFR)-based phenotypes for advanced CKD in an electronic health record (EHR) database. We sought to develop a pragmatic EHR phenotype capable of improving the real-time identification of advanced CKD cohorts in a regional Veterans health care system.
Using the Veterans Affairs Informatics and Computing Infrastructure services, we extracted the source cohort of Veterans with advanced CKD based on a combination of the latest eGFR value ≤30 ml·min·1.73 m or existing International Classification of Diseases (ICD)-10 diagnosis codes for advanced CKD (N18.4 and N18.5) in the last 12 months. We estimated the prevalence of advanced CKD using various prior published EHR phenotypes (ie, advanced CKD diagnosis codes, using the latest single eGFR <30 ml·min·1.73 m, utilizing two eGFR values) and our operational EHR phenotypes of a high-, intermediate-, and low-risk advanced CKD cohort. We evaluated the accuracy of these phenotypes by examining the likelihood of a sustained reduction of eGFR <30 ml·min·1.73 m over a 6-month follow-up period.
Of the 133,756 active Veteran enrollees at North Florida/South Georgia Veterans Health System (NF/SG VHS), we identified a source cohort of 1759 Veterans with advanced nondialysis CKD. Among these, 1102 (62.9%) Veterans had diagnosis codes for advanced CKD; 1391(79.1%) had the index eGFR <30 ml·min·1.73 m; and 928 (52.7%), 480 (27.2%), and 315 (17.9%) Veterans had high-, intermediate-, and low-risk advanced CKD, respectively. The prevalence of advanced CKD among Veterans at NF/SG VHS varied between 1% and 1.5% depending on the EHR phenotype. At the 6-month follow-up, the probability of Veterans remaining in the advanced CKD stage was 65.3% in the group defined by the ICD-10 codes and 90% in the groups defined by eGFR values. Based on our phenotype, 94.2% of high-risk, 71% of intermediate-risk, and 16.1% of low-risk groups remained in the advanced CKD category.
While the prevalence of advanced CKD has limited variation between different EHR phenotypes, the accuracy can be improved by utilizing two eGFR values in a stratified manner. We report the development of a pragmatic EHR-based model to identify advanced CKD within a regional Veterans health care system in real time with a tiered approach that allows targeting the needs of the groups at risk of progression to end-stage kidney disease.
在临床数据库中识别晚期(4期和5期)慢性肾脏病(CKD)队列复杂且往往不可靠。准确识别这些患者有助于针对该人群满足其特殊的临床和研究需求。
本研究作为一种基于系统的策略,旨在识别所有患有晚期CKD的退伍军人,以便随后纳入一项临床试验。我们旨在检查电子健康记录(EHR)数据库中用于晚期CKD的传统诊断代码和基于估计肾小球滤过率(eGFR)的表型的患病率和准确性。我们试图开发一种实用的EHR表型,以改善在地区退伍军人医疗保健系统中对晚期CKD队列的实时识别。
利用退伍军人事务部信息学和计算基础设施服务,我们根据最近的eGFR值≤30 ml·min·1.73 m²或过去12个月内现有的晚期CKD国际疾病分类(ICD)-10诊断代码(N18.4和N18.5)的组合,提取患有晚期CKD的退伍军人源队列。我们使用各种先前发表的EHR表型(即晚期CKD诊断代码、使用最新的单次eGFR <30 ml·min·1.73 m²、利用两个eGFR值)以及我们的高、中、低风险晚期CKD队列的实用EHR表型,估计晚期CKD的患病率。我们通过检查在6个月随访期内eGFR持续降低至<30 ml·min·1.73 m²的可能性,评估这些表型的准确性。
在北佛罗里达/南佐治亚退伍军人医疗系统(NF/SG VHS)的133,756名现役退伍军人登记者中,我们识别出1759名患有晚期非透析CKD的退伍军人源队列。其中,1102名(62.9%)退伍军人有晚期CKD的诊断代码;1391名(79.1%)的索引eGFR <30 ml·min·1.73 m²;928名(52.7%)、480名(27.2%)和315名(17.9%)退伍军人分别患有高、中、低风险晚期CKD。根据EHR表型,NF/SG VHS退伍军人中晚期CKD的患病率在1%至1.5%之间。在6个月随访时,由ICD-10代码定义的组中退伍军人仍处于晚期CKD阶段的概率为65.3%,由eGFR值定义的组中为90%。根据我们的表型,高风险组的94.2%、中风险组的71%和低风险组的16.1%仍处于晚期CKD类别。
虽然不同EHR表型之间晚期CKD的患病率差异有限,但通过分层使用两个eGFR值可以提高准确性。我们报告了一种基于EHR的实用模型的开发,该模型通过分层方法在地区退伍军人医疗保健系统中实时识别晚期CKD,从而能够针对有进展至终末期肾病风险的人群的需求。