Shang Ning, Khan Atlas, Polubriaginof Fernanda, Zanoni Francesca, Mehl Karla, Fasel David, Drawz Paul E, Carrol Robert J, Denny Joshua C, Hathcock Matthew A, Arruda-Olson Adelaide M, Peissig Peggy L, Dart Richard A, Brilliant Murray H, Larson Eric B, Carrell David S, Pendergrass Sarah, Verma Shefali Setia, Ritchie Marylyn D, Benoit Barbara, Gainer Vivian S, Karlson Elizabeth W, Gordon Adam S, Jarvik Gail P, Stanaway Ian B, Crosslin David R, Mohan Sumit, Ionita-Laza Iuliana, Tatonetti Nicholas P, Gharavi Ali G, Hripcsak George, Weng Chunhua, Kiryluk Krzysztof
Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
NPJ Digit Med. 2021 Apr 13;4(1):70. doi: 10.1038/s41746-021-00428-1.
Chronic Kidney Disease (CKD) represents a slowly progressive disorder that is typically silent until late stages, but early intervention can significantly delay its progression. We designed a portable and scalable electronic CKD phenotype to facilitate early disease recognition and empower large-scale observational and genetic studies of kidney traits. The algorithm uses a combination of rule-based and machine-learning methods to automatically place patients on the staging grid of albuminuria by glomerular filtration rate ("A-by-G" grid). We manually validated the algorithm by 451 chart reviews across three medical systems, demonstrating overall positive predictive value of 95% for CKD cases and 97% for healthy controls. Independent case-control validation using 2350 patient records demonstrated diagnostic specificity of 97% and sensitivity of 87%. Application of the phenotype to 1.3 million patients demonstrated that over 80% of CKD cases are undetected using ICD codes alone. We also demonstrated several large-scale applications of the phenotype, including identifying stage-specific kidney disease comorbidities, in silico estimation of kidney trait heritability in thousands of pedigrees reconstructed from medical records, and biobank-based multicenter genome-wide and phenome-wide association studies.
慢性肾脏病(CKD)是一种渐进性疾病,通常在晚期才会出现明显症状,但早期干预可显著延缓其进展。我们设计了一种便携式、可扩展的电子CKD表型,以促进疾病的早期识别,并为大规模的肾脏特征观察性研究和基因研究提供支持。该算法结合了基于规则和机器学习的方法,通过肾小球滤过率自动将患者置于蛋白尿分期网格(“A-by-G”网格)中。我们通过对三个医疗系统的451份病历进行人工验证,结果显示CKD病例的总体阳性预测值为95%,健康对照为97%。使用2350份患者记录进行的独立病例对照验证显示,诊断特异性为97%,敏感性为87%。将该表型应用于130万患者的研究表明,仅使用国际疾病分类(ICD)编码会漏诊超过80%的CKD病例。我们还展示了该表型的几个大规模应用,包括识别特定阶段的肾脏疾病合并症、根据病历重建的数千个家系中肾脏特征遗传力的计算机模拟估计,以及基于生物样本库的多中心全基因组和全表型关联研究。