CITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Lugo, Spain.
PLoS One. 2023 Jul 24;18(7):e0288964. doi: 10.1371/journal.pone.0288964. eCollection 2023.
The performance and reliability of semiconductor devices scaled down to the sub-nanometer regime are being seriously affected by process-induced variability. To properly assess the impact of the different sources of fluctuations, such as line edge roughness (LER), statistical analyses involving large samples of device configurations are needed. The computational cost of such studies can be very high if 3D advanced simulation tools (TCAD) that include quantum effects are used. In this work, we present a machine learning approach to model the impact of LER on two gate-all-around nanowire FETs that is able to dramatically decrease the computational effort, thus reducing the carbon footprint of the study, while obtaining great accuracy. Finally, we demonstrate that transfer learning techniques can decrease the computing cost even further, being the carbon footprint of the study just 0.18 g of CO2 (whereas a single device TCAD study can produce up to 2.6 kg of CO2), while obtaining coefficient of determination values larger than 0.985 when using only a 10% of the input samples.
随着半导体器件向亚纳米尺度的缩小,工艺引起的变异性严重影响了其性能和可靠性。为了正确评估不同波动源(如线边缘粗糙度(LER))的影响,需要对大量器件结构的样本进行统计分析。如果使用包括量子效应的 3D 先进仿真工具(TCAD),则此类研究的计算成本可能非常高。在这项工作中,我们提出了一种机器学习方法来模拟 LER 对两种全环绕纳米线 FET 的影响,该方法能够显著降低计算成本,从而减少研究的碳足迹,同时获得很高的准确性。最后,我们证明了迁移学习技术可以进一步降低计算成本,研究的碳足迹仅为 0.18 克二氧化碳(而单个器件 TCAD 研究可能产生高达 2.6 千克二氧化碳),而仅使用 10%的输入样本时,确定系数的值大于 0.985。