Fernandez Julian G, Etesse Guéric, Seoane Natalia, Comesaña Enrique, Hirakawa Kazuhiko, Garcia-Loureiro Antonio, Bescond Marc
Centro Singular de Investigación en Tecnoloxías Intelixentes, USC, 15782, Santiago de Compostela, Spain.
GRADIANT (Galician Research and Development Center for Advanced Telecommunications), 36214, Vigo, Spain.
Sci Rep. 2024 Nov 18;14(1):28545. doi: 10.1038/s41598-024-80212-9.
Cooling devices grounded in solid-state physics are promising candidates for integrated-chip nanocooling applications. These devices are modeled by coupling the quantum non-equilibirum Green's function for electrons with the heat equation (NEGF+H), which allows to accurately describe the energetic and thermal properties. We propose a novel machine learning (ML) workflow to accelerate the design optimization process of these cooling devices, alleviating the high computational demands of NEGF+H. This methodology, trained with NEGF+H data, obtains the optimum heterostructure designs that provide the best trade-off between the cooling power of the lattice (CP) and the electron temperature ([Formula: see text]). Using a vast search space of [Formula: see text] different device configurations, we obtained a set of optimum devices with prediction relative errors lower than [Formula: see text] for CP and [Formula: see text] for T. The ML workflow reduces the computational resources needed, from two days for a single NEGF+H simulation to 10 s to find the optimum designs.
基于固态物理的冷却装置是集成芯片纳米冷却应用的有前途的候选者。这些装置通过将电子的量子非平衡格林函数与热方程(NEGF+H)耦合来建模,这使得能够准确描述能量和热性质。我们提出了一种新颖的机器学习(ML)工作流程,以加速这些冷却装置的设计优化过程,减轻NEGF+H的高计算需求。这种方法用NEGF+H数据进行训练,获得了在晶格冷却功率(CP)和电子温度([公式:见正文])之间提供最佳权衡的最佳异质结构设计。使用[公式:见正文]种不同器件配置的巨大搜索空间,我们获得了一组最佳器件,CP的预测相对误差低于[公式:见正文],T的预测相对误差低于[公式:见正文]。ML工作流程减少了所需的计算资源,从单次NEGF+H模拟的两天减少到找到最佳设计的10秒。